Abstract View

Author(s): Pritimala Sahu, Bhanushree Gupta

Email(s): bgupta1517@gmail.com

Address: School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur (C.G.), India 492010
Center for Basic Sciences, Pt. Ravishankar Shukla University Raipur (C.G.), India 492010
*Corresponding Author: bgupta1517@gmail.com

Published In:   Volume - 37,      Issue - 2,     Year - 2024

DOI: 10.52228/JRUB.2024-37-2-12  

ABSTRACT:
Nanoparticles made of albumin have shown great application value in the field of medicine as drug carriers because of their excellent biocompatibility. Albumin-based nanoparticles are generally produced through a desolvation process, which can be strongly affected by pH, temperature, and other desolvating chemicals including ethanol and acetone. In recent years, albumin has been used as a carrier in the diagnosis and treatment of diseases like cancer, HIV, hepatitis, and influenza. Albumin has been shown to be a nontoxic, biocompatible, and biodegradable protein carrier for drug delivery. This review deals with the synthesis of albumin-based nanoparticles and, their characterization through analytical techniques, and their applications. The major characterization techniques include UV-Visible Spectroscopy, Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FT-IR), Field Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). These albumin-based nanoparticles provide an added advantage over other available nanoparticles by being biodegradable and biocompatible. The albumin-based nanoparticles have their applications in medicine and therapeutics, agriculture, cosmetics, and the food industry.

Cite this article:
Sahua and Guptab (2024). Preparation, Characterization, and Applications of Albumin Serum-Based Nanoparticles. Journal of Ravishankar University (Part-B: Science), 37(2), pp. 169-188. DOI:DOI: https://doi.org/10.52228/JRUB.2024-37-2-12


References

Ahmed O. Elzoghby, Wael M. Samy, Nazik A. Elgindy (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems J Controlled Rel 157 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031.

AL-Jawad, S.M.H., Taha, A.A., Al-Halbosiy, M.M.F., AL-Barram, L.F.A., (2018).  Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy, Photodiagnosis Photodyn Ther, 21 201–210. https://doi.org/10.1016/j.pdpdt.2017.12.004.

Batchelor, H., Kaukonen, A.M., Klein, S., Davit B., Ju, R., Ternik, R., Heimbach, T., Lin, W., Wang, J., Storey, D., (2018). Food effects in pediatric medicines development for products Co-administered with food, Int J Pharm, 536 530–535. https://doi.org/10.1016/j.ijpharm.2017.05.011.

Chamundeeswari, M., Jeslin, J., Verma, M.L., (2018).  Nanocarriers for drug delivery applications, Undefined, 17 849–865. https://doi.org/10.1007/S10311-018-00841-1.

Chen, C., Yang, Z., Tang, X., (2018). Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy, Med Res Rev, 38 829–869. https://doi.org/10.1002/med.21479.

Chinnathambi, S., Karthikeyan, S., Velmurugan, D., Hanagata, N., Aruna, P., Ganesan, S., (2015). Effect of Moderate UVC Irradiation on Bovine Serum Albumin and Complex with Antimetabolite 5-Fluorouracil: Fluorescence Spectroscopic and Molecular Modelling Studies, Int  J Spectro, 2015 12. http://dx.doi.org/10.1155/2015/315764.

Divya, K., Jisha, M. S., (2018). Chitosan nanoparticles preparation and applications, Enviro Chem Letters, 16 101-112. https://doi.org/10.1007/s10311017.

Elsadek, B., Kratz, F., (2012).  Impact of albumin on drug delivery — New applications on the horizon, J Controlled Rel, 157 4–28. https://doi.org/10.1016/j.jconrel.2011.09.069.

Elzoghby, A. O., Elgohary, Mayada M., Kamel, Nayra M., (2015). Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs, Adv in Protein Chem and Str Bio, 169-221. http://dx.doi.org/10.1016/bs.apcsb.2014.12.002.

Elzoghby, A.O., Elgohary, M.M., Panwar, P., Pande, B., Lakhera, P.C., Singh, K.P., (2010). Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes, Int J Nanomedicine, 5 101–108. https://doi.org/10.2147/ijn.s8030.

Elzoghby, A.O., Samy, W.M., Elgindy, N.A., (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems, J Control Relhup, 157 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031.

Ferrara, F., Pambianchi, E., Woodby, B., Messano, N., Therrien, J.P., Pecorelli, A., Canella, R., Valacchi, G., (2021).  Evaluating the effect of ozone in UV-induced skin damage, Toxicol Lett, 338 40–50. https://doi.org/10.1016/j.toxlet.2020.11.023.

  Frates, K. de, Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., Hu, X., (2018). Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications, Int J Mol Sci, 19 1717.  https://doi.org/10.3390/ijms19061717.

 Hong, S., Choi, D.W., Kim, H.N., Park, C.G., Lee, W., Park, H.H., (2020). Protein-Based Nanoparticles as Drug Delivery Systems, Pharma, 12 604. https://doi.org/10.3390/pharmaceutics12070604.

 Ilium, L., (1998). Chitosan and its use as a pharmaceutical excipient. Pharm Res, 15(9) 1326–1331. https://doi.org/10.1023/a:1011929016601.

Iqbal, H., Yang, T., Li, T., Zhang, Zhang, M., Ke, H., Ding, D., Deng, Y., Chen, H., (2021).    Serum protein-based nanoparticles for cancer diagnosis and treatment, J Control Rel, 329 997–1022. https://doi.org/10.1016/j.jconrel.2020.10.030.

Irache, J., Merodio, M., Arnedo, A., Camapanero, M., Mirshahi, M., Espuelas, S., (2005). Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs, Mini Rev Med Chem, 5 293–305. https://doi.org/10.2174/1389557053175335.

Jacob, J., Haponiuk, J.T., Thomas, S., Gopi, S., (2018). Biopolymer based nanomaterials in drug delivery systems: A review, Mater Today Chem, 9 43–55. https://doi.org/10.1016/j.mtchem.2018.05.002.

Jahanban-Esfahlan, A., Dastmalchi, S., Davaran, S., (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles, Int J Biol Macromol, 91 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032.

Jain, A., Singh, S.K., Arya, S.K., Kundu, S.C., Kapoor, S., (2018). Protein Nanoparticles: Promising Platforms for Drug Delivery Applications, ACS Biomater Sci Eng, 4 3939–3961. https://doi.org/10.1021/acsbiomaterials.8b01098.

Jiménez-Cruz, E., Arroyo-Maya, I.J.,   Hernández-Arana, A., Cornejo-Mazón, M., Hernández-Sánchez, H., (2015).  Protein-based nanoparticles, Food Eng Series, 69–79. https://doi.org/10.1007/978-3-319-13596-0_5.

Jonassen, H., Kjoniksen, AL., Hiorth, M., (2012). Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacro mol, 13(11) 3747–3756. https://doi.org/10.1021/bm301207a.

Joye, I.J., McClements, D.J., (2014).  Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application, Curr Opin Colloid Interface Sci, 19 417–427. https://doi.org/10.1016/j.cocis.2014.07.002.

Kamel, N.M., (2015).  Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs, Adv Protein Chem Struct Biol, 98 169–221. https://doi.org/10.1016/bs.apcsb.2014.12.002.

Karami, E., Behdani, M., Kazemi-Lomedasht, F., (2020). Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs, J Drug Deliv Sci Technol, 55 101471. https://doi.org/10.1016/j.jddst.2019.101471.

Kianfar, E., (2021). Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles, J Nanobiotechn, 19 1–32. https://doi.org/10.1186/S12951-021-00896-3.

Kim, B.Y.S., Rutka, J.T., Chan, W.C.W., (2010).  Nanomedicine, N Engl J Med, 363 2434–2443. https://doi.org/10.1056/nejmra0912273.

Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, Schubert, H., D., (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles, Int J Pharm, 257 169–180. https://doi.org/10.1016/S0378-5173(03)00134-0.

Larsen, M.T., Kuhlmann, M., Hvam, M.L., Howard, K.A., (2016). Albumin-based drug delivery: harnessing nature to cure disease, Mol Cell Ther, 4 3-10. https://doi.org/10.1186/S40591-016-0048-8.

Lee, S.H., Heng, D., Ng, W.K., Chan, H.K., Tan, R.B., (2011). Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy, Int J Pharm, 403 192–200. https://doi.org/10.1016/j.ijpharm.2010.10.012.

Lei, C., Liu, X.R., Chen, Q.B., Li, Y., Zhou, J.L., Zhou, L.Y., Zou, T., (2021). Hyaluronic acid and albumin based nanoparticles for drug delivery, J of Controlled Release, 331 416–433. https://doi.org/10.1016/j.jconrel.2021.01.033.

   Li, G., Zhang, Y.Y., Guo, H., Huang, L., Lu, H., Lin, X., Wang, Y.L., Du, S., Gao, H.J., (2018). Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds, Chem Soc Rev, 47 6073–6100. https://doi.org/10.1039/c8cs00286j.

Li, W., Wang, H.F., Kuruneru, S.T.W., Wang, T., Sauret, E., Li,  Z.Y., Zhao, C.X., Gu, Y.T., (2018). A numerical investigation of drug extravasation using a tumour–vasculature microfluidic device, Microfluidics and Nanofluidics, 22 1–11. https://doi.org/10.1007/s10404-018-2165-y.

Liu, Y., Hui, Y., Ran, R., Yang, G.Z., Wibowo, D., Wang, H.F., Middelberg, A.P.J., Zhao, C.X., (2018). Synergetic Combinations of Dual-Targeting Ligands for Enhanced In Vitro and In Vivo Tumor Targeting, Adv Healthc Mater, 7 1800106. https://doi.org/10.1002/adhm.201800106.

 Lohcharoenkal, W., Wang, L., Chen, Y.C., Rojanasakul, Y., (2014). Protein nanoparticles as drug delivery carriers for cancer therapy, Biomed Res Int, 2014 1-12. https://doi.org/10.1155/2014/180549.

Lomis, N., Sarfaraz, Z.K., Alruwaih, A., Westfall, S., Shum-Tim, D., Prakash, S., (2021). Albumin Nanoparticle Formulation for Heart-Targeted Drug Delivery: In Vivo Assessment of Congestive Heart Failure, Pharmaceuticals, 14 697. https://doi.org/10.3390/ph14070697.

Lu, Z., Yeh, T. K., Tsai, M., Au, J. L., & Wientjes, M. G. (2004). Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Research, 10(22) 7677–7684 https://doi.org/10.1158/1078-0432.ccr-04-1443.

Meng, R., Zhu, H., Wang, Z., Hao, S., Wang, B., (2022). Preparation of Drug-Loaded Albumin Nanoparticles and Its Application in Cancer Therapy, J Nanomater, 1–12. https://doi.org/10.1155/2022/3052175.

   Moghimi, S.M., Hunter, A.C., Murray, J.C., (2005).  Nanomedicine: current status and future prospects, Faseb J, 19 311–330. https://doi.org/10.1096/fj.04-2747rev.

Nitta, S. K. and Numata, K., (2013).  Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering, Int J Mol Sci, 14, 1629–1654. https://doi.org/10.3390/ijms14011629.

Ritz, S., Schöttler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev , J.,  Landfester , K., Schild , H., Jahn, O., Tenzer, S., Mailänder, V.,  (2015). Protein corona of nanoparticles: distinct proteins regulate the cellular uptake, Biomacromol, 16 1311–1321. https://doi.org/10.1021/acs.biomac.5b00108.

         Solanki, R., Patel, K., Patel, S., (2021). Bovine Serum Albumin Nanoparticles for the Efficient Delivery of Berberine: Preparation, Characterization and In vitro biological studies, Colloids Surf A Physicochem Eng Asp, 608 125501. https://doi.org/10.1016/j.colsurfa.2020.125501.

Sripriyalakshmi, S., Jose, P., Ravindran, A., Anjali, C.H., (2014).  Recent Trends in Drug Delivery System Using Protein Nanoparticles, Cell Biochem Biophys, 70 17–26. https://doi.org/10.1007/s12013-014-9896-5.

Suwannoi, P., Chomnawang, M., Sarisuta, N., Reichl, S., Müller-Goymann, C.C., (2017). Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells, J Ocul Pharmacol  Ther,  33 743–752. https://doi.org/10.1089/jop.2017.0057.

Tarhini, M., Greige-Gerges, H., Elaissari, A., (2017). Protein-based nanoparticles: From preparation to encapsulation of active molecules, Int J Pharm, 522 172–197. https://doi.org/10.1016/j.ijpharm.2017.01.067.

Vandervoort, J., Ludwig, A., (2002).  Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study, Int J Pharm, 238 77–92. https://doi.org/10.1016/S0378-5173(02)00058-3.

Verma, D., Gulati, N., Kaul, S., Mukherjee, S., Nagaich, U., (2018). Protein Based Nanostructures for Drug Delivery, J Pharm (Cairo), 2018 1–18. https://doi.org/10.1155/2018/9285854.

Verma, M.L., Dhanya, B.S., Sukriti, Rani, V., Thakur, M., Jeslin, J., Kushwaha, R., (2020). Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications, Int J Biol Macromol, 154 390–412. https://doi.org/10.1016/j.ijbiomac.2020.03.105.

Wilson, B., Paladugu, L., Priyadarshini, S.R.B., Jenita, J.J.L., (2015). Development of albumin-based nanoparticles for the delivery of abacavir, Int J Biol Macromol.  81 763–767. https://doi.org/10.1016/j.ijbiomac.2015.09.015.

Wu, L.X., Qiao, Z.R., Cai, W.D., Qiu,W.Y., Yan,  J.K., (2019). Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin, Food Chem, 291 180–186. https://doi.org/10.1016/j.foodchem.2019.04.029.

Yedomon, B., Fessi, H., Charcosset, C., (2013). Preparation of Bovine Serum Albumin (BSA) nanoparticles by desolvation using a membrane contactor: A new tool for large scale production, European J Pharma and Biopharma, 85 398–405. https://doi.org/10.1016/j.ejpb.2013.06.014.

Yu, J., Chen, Y., Xiong, L., Zhang, X., Zheng, Y., (2019). Conductance Changes in Bovine Serum Albumin Caused by Drug-Binding Triggered Structural Transitions,  Materials, 12 102. http://dx.doi.org/10.3390/ma12071022.

Yu, X., Jin, C., (2015).  Application of albumin-based nanoparticles in the management of cancer, Journal of Materials Science: Materials in Medicine, 27 1–10. https://doi.org/10.1007/S10856-015-5618-9.

Zhou, H.Y., Hao, J.L., Wang, S., Zheng, Y., Zhang, W.S., (2013). Nanoparticles in the ocular drug delivery, Int J Ophthalmol, 6 390–396. https://doi.org/10.3980/j.issn.2222-3959.2013.03.25.

Related Images:



Recent Images



A Review on role of Congestion Control Techniques in Internet of Things
Recent Advancement in Capsule: Emerging Novel Technologies and Alternative Shell Materials for Wide Range of Therapeutic Needs
Effect of L-Dopa on cypermethrin induced reproductive conditions in female Japanese quail, Coturnix coturnix japonica
Preparation, Characterization, and Applications of Albumin Serum-Based Nanoparticles
Study of developmental stages and morphometrics of Parthenium beetle in Bastar plateau agro-climatic zone of Chhattisgarh
PANI Incorporated Fe-MOF: As an Electrode Material for Supercapacitor
Surface Modified Magnetic Nanoparticles as an Efficient Material for Wastewater Remediation: A Review
A Review on Groundwater Pollution in India and their Health Problems
Incidence of Chronic fever in Raigarh Development Block of Raigarh District, Chhattisgarh, India
Study the optimization of Dijkstra’s Algorithm

Tags


Recomonded Articles:

Author(s): Swati Jain; Somesh Kumar Dewangan

DOI: 10.52228/JRUB.2021-34-1-9         Access: Open Access Read More

Author(s): Anil Kumar Verma*; Swati Sahu; Mohan Patel; Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-5         Access: Open Access Read More

Author(s): Anushree Saha; Manas Kanti Deb*; Mithlesh Mahilang; Shubhra Sinha

DOI: 10.52228/JRUB.2020-33-1-7         Access: Open Access Read More

Author(s): Beeta Rani Khalkho; Anushree Saha; Bhuneshwari Sahu; Manas Kanti Deb*

DOI: 10.52228/JRUB.2021-34-1-6         Access: Open Access Read More

Author(s): Nikita Verma; Swarnlata Saraf

DOI:         Access: Open Access Read More

Author(s): Swarnlata Saraf; Shailendra Saraf

DOI:         Access: Open Access Read More

Author(s): Yogyata Chawre; Lakshita Dewangan; Ankita Beena Kujur; Indrapal Karbhal; Rekha Nagwanshi; Vishal Jain; Manmohan L. Satnami

DOI: 10.52228/JRUB.2022-35-1-7         Access: Open Access Read More

Author(s): Shweta Sao; Hemlata Nishad

DOI:         Access: Open Access Read More

Author(s): Gamini Sahu; Aditi Niyogi Poddar

DOI:         Access: Open Access Read More

Author(s): R.C. Maurya;A.K. Sharma;P.K. Vishwkarma;J.M. Mir;B.A. Malik;D.K. Rajak

DOI:         Access: Open Access Read More

Author(s): Mohammad A Rashid

DOI:         Access: Open Access Read More

Author(s): Dipti Sahu; D.P. Bisen; Nameeta Brahme; Kanchan Tiwari; Aastha Sahu

DOI: 10.52228/JRUB.2023-36-1-10         Access: Open Access Read More