Abstract View

Author(s): Shrabani Karan*, R.C. Agrawal

Email(s): shrabo12karan@gmail.com

Address: School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur – 492010, CG, India
*Corresponding Author: shrabo12karan@gmail.com

Published In:   Volume - 32,      Issue - 1,     Year - 2019

DOI: 10.52228/JRUB.2019-32-1-11  

Investigations on ion-transport and materials properties of poly (ethylene oxide) (PEO) based Zn2+ conducting Nano-Composite Polymer Electrolyte (NCPE) membranes: [90 PEO: 10 Zn (CF3SO3)2] + xAl2O3, have been reported. NCPE films have been prepared by a completely dry hot-press cast technique using Solid Polymer Electrolyte (SPE) composition: [90 PEO: 10 Zn (CF3SO3)2] as I phase and Al2O3 nano-filler particles (< 50 nm) as II- Phase dispersoid. In an earlier study, SPE used here as I phase host has been identified as optimum room temperature conducting film exhibiting (srt) ~1.01 x 10-5 S/cm. As a consequence of fractional dispersal of nano-filler particles in SPE, additional srt enhancement of an order of magnitude was obtained. This has been referred as NCPE OCC film. Ion transport behavior in NCPE OCC has been characterized in terms of ionic conductivity (?), total ionic (tion)/cation (t+) transport numbers which have been measured using different ac/dc techniques. Temperature dependent conductivity study has also been carried out to understand the mechanism of ion transport and to compute activation energy (Ea) from ‘log s-1/T’ plot. Materials and thermal properties have been characterized with the help of SEM, XRD, FTIR and DSC / TGA techniques.

Cite this article:
Karan and Agrawal (2019). Ion Transport and Materials Characterization Studies on Hot-Press Cast Zn2+ Conducting Nano-Composite Polymer Electrolyte (NCPE) Films: [90 PEO: 10 Zn (CF3SO3)2] + xAl2o3. Journal of Ravishankar University (Part-B: Science), 32 (1), pp. 76-83DOI: https://doi.org/10.52228/JRUB.2019-32-1-11


Kim, J.G., Son, B., Mukherjee, S., Schuppert, N., Bates, A., Kwon, O., Choi, M.J., Chung H.Y., Park, S. (2015). A review of lithium and non-lithium based solid state batteries. Journal of Power Sources, 282-299.

Ponronch, A., Monti, D., Boschin, A., Steen, B., Johansson P., Palacin, M.R. (2015). Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry, 3: 22.

Zhon, G., Li, F., Cheng, H.M. (2014). Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 7: 1307.

Quartarone, E., Mustarelli, P. (2011). Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 40: 2525.

Agrawal, R. C., Pandey, G. P. (2008). Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics, 41: 223001.

Tarascon, J. M., Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature. 414: 359.

Fenton, D. E., Parker, J. M., Wrigth, P. V. (1973). Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14: 589.

Armand, M.B., Chabagno, J.M., Duclot, M., Vashitshta, P., Mundy, J.M., Shenoy, G.K. (1979). Fast Ion Transport in Solids. Poly- ethers as solid electrolytes, 131.

Armand, M. B. (1986). Polymer Electrolytes. Annual Review of Materials Research, 16: 245.

Ratner, M. A., Shriver, D. F. (1988). Ion transport in solvent-free polymers. Chemical Reviews, 88: 109.

MacCallum, J.R., Vincent, C.A. (1987 & 89) Polymer Electrolyte Reviews. 1 & 2. Elsevier Applied Sciences Publisher.

Murata, K. (1995). An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta, 40: 2177- 2184.

Bruce, P. G. (1995). Solid State Electrochemistry. Cambridge University Press, Cambridge, ISBN-13: 978-0521599498.

Gray, F.M., Connor, J.A. (1997). Polymer Electrolytes, Royal Society of Chemistry, Cambridge. RSC Materials Monographs.

Gray, F. M., Armand, M. B., Besenhard, J. O. (1999). Handbook of Battery Materials’, (Ed.).  Wiley- VCH, 499.

Croce, F., Appetecchi, G. B., Persi, L., Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature394:456.

Appetecchi, G. B., Croce, F., Persi, L., Ronci, F., Scrosati, B. (2000). Transport and interfacial properties of composite polymer electrolytes. Electrochimica Acta, 45:1481.

Scrosati, B., Vincent, C.A. (2000). Polymer Electrolytes: The Key to Lithium Polymer Batteries. MRS Bulletin, 25: 28.

Appetecchi, G. B., Hassoun, J., Scrosati, B., Croce, F., Cassel, F., Salomon, M. (2003) Hot-pressed, solvent-free, nanocomposite, PEObased electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. Journal of Power Sources, 124: 246.

Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4: 366.

Scrosati B., Garche, J. (2010). Review: Lithium batteries: Status, prospects and future. Journal of Power Sources, 195:2419.

Armand, M. B., Bruce, P. G., Forsyth, M., Scrosati, B., Wieczorek, W., Bruce, D.W., (2011) Polymer Electrolytes in Energy. John Wiley & Sons, 31.

Agrawal R. C., Gupta, R. K. (1999). Review Superionic solids: composite electrolyte phase – an overview. Journal of Materials Science, 34:1131.

Hassan, M.F., Yuso, S.Z.M. (2014). Poly (Acrylamide-Co-Acrylic Acid)-Zinc Acetate Polymer Electrolytes: Studies Based on Structural and Morphology and Electrical Spectroscopy. Microscopy Research, 2: 30.

Agrawal, R.C. (2013) Magnesium Ion Conducting Polymer Electrolytes: Potenial Altenate as Non-lithium Electrolytes for All-Solid-State Battery applications. Technical Proc. NSTI Nano technology conf. & Expo-Nanotech, 2:650.

Pandey, G.P., Agrawal, R.C., Hashmi, S.A. (2009). Magnesium ion-conducting gel polymer electrolytes dispersed with nano sized magnesium oxide. Journal of Power Sources, 190: 563.

Kumar, G.G., Sampath, S. (2003). Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics, 160:289.

McLarnon, F.R., Cairns, E.J. (1991). The Secondary Alkaline Zinc Electrode. Journal of The Electrochemical Society, 138: 645.

Polu, A. R., Kumar, R., Joshi, G. M. (2014). Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Ionics, 20: 675.

Karan, S., Sahu, T.B., Sahu, M., Mahipal, Y.K., Agrawal, R. C. (2017). Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn (CF3SO3)2]. Ionics, DOI 10.1007/s11581-017-2036-7.

Gray, F. M., McCallum, J. R., Vincent, C. A. (1986). Poly (ethylene oxide) - LiCF3SO3 - polystyrene electrolyte systems. Solid State Ion, 282: 18.

Appetecchi, G. B., Croce, F., Doutzenberg, G.,  Mastragostino, F., Ronci, B., Scrosati, F., Soavi, A., Zanelli, F., Alessandrini,  Prosini, P. P. (1998). Composite polymer electrolytes with improved lithium metal-electrode interfacial properties - I – electrochemical properties of dry PEO-Lix systems. Journal of The Electrochemical Society, 145: 4126.

Prosini, P. P., Passerini, S., Vellone, R., Smyrl, W .H. (1998) v2o5 xerogel lithium-polymer electrolyte batteries. Journal of Power Sources, 75: 73.

Capiglia, C., Yang, J., Imanishi, N., Hirano, A., Takeda, Y., Yamamoto, O. (2002). Composite polymer electrolyte: the role of filler grain size. Solid State Ion, 154L: 7.

Scrosati, B., Croce, F., Persi, L. (2000). Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes. Journal of The Electrochemical Society,147: 1718.

Pandey, G.P., Hashmi, S.A., Agrawal, R.C. (2008). Hot-press synthesized polyethylene oxide-based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ion, 179: 543.

Pandey, G.P., Hashmi S.A., Agrawal, R.C. (2008). Experimental investigations on a proton conducting nanocomposite polymer electrolyte. Journal of Physics D: Applied Physics, 41: 055409.

Karan, S., Sahu, T.B., Sahu, M., Agrawal, R. C. (2016). Investigations on Ion Transport Behaviour in a Non-Lithium Chemical Based Solid Polymer Electrolyte (SPE): [PEO:ZnA]. Materials Today: Proceedings, 3: 109.

Chandra, S., Tolpadi, S.K., Hashmi, S.A. (1988). Transient ionic current measurement of ionic mobilities in a few proton conductors. Solid State Ionics, 28: 615.

Watanabe, M., Sanui, K., Ogata, N., Kobayashi, T., Ontaki, Z. (1985). Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate. Journal of Physics D: Applied Physics, 57:123.

Evans, J., Vincent, C.A., Bruce, P.G. (1987). Electrochemical measurement of transference numbers in polymer electrolytes. Polymer,  28: 2324.

Shin, J.H., Henderson, W.A., Passerini, S. (2003). Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymerelectrolytes.  Electrochemistry Communications, 5:1016.

Ibrahim, S., Johan, M. R. (2012). International Journal of Electrochemical Science, 7:2596.

Lakshmi, N., Chandra, S. (2001) Proton Conducting Composites of Heteropolyacid Hydrates (Phosphomolybdic and Phosphotungstic Acids) Dispersed with Insulating Al2O3. Physica status solidi (a), 186:395.

Sownthari, K., Suthanthiraraj, S. A. (2013). Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polymer Letters, 7(6): 495.

Related Images:

Recent Images

Chlorpyrifos Mediated Amendment in Protein Profiling of Bacillus spp.
Structural, Compositional and Photoluminescence Studies of Li4SrCa(SiO4)2: Eu3+ Red Phosphor Synthesized by Solid State Reaction Method
Formulation and Characterization of Magnetically Responsive Mesalamine Microspheres for Colon Targeting
Development of Non-Invasive Technique for Heart Rate Detection Using Facial Videos
Human Part Semantic Segmentation Using CDGNET Architecture for Human Activity Recognition
Lifestyle Modification Therapy and its Effect on Weight Status of Non-Alcoholic Male Liver Disease Patients
Exploring Life Cycle Analysis in Developing Sustainable Communities in Chhattisgarh
Monitoring the Concentration of Lead in the Industrial Wastewater of Baloda Bazar District
Impact of Climate Change on Paddy Yield in Bastar District of Chhattisgarh
Chemical Pollutants: A Concern to The Environment


Recomonded Articles:

Author(s): Krishna Yadav*; Jyoti Pawar; Deependra Singh; Manju Rawat Singh

DOI: 10.52228/JRUB.2018-31-1-2         Access: Open Access Read More

Author(s): VN Chavhan

DOI:         Access: Open Access Read More

Author(s): Mukesh Sharma; Ajazuddin; Amit Alexander; DK Tripathi

DOI:         Access: Open Access Read More

Author(s): Swapnil Deshmukh; Nikhil Chawala; Atharv Bhide; Shekhar Waikar

DOI:         Access: Open Access Read More

Author(s): Minakshi Waghmare; Kalyani Kale; Deepti Bhagchandani; Shekhar Waikar

DOI:         Access: Open Access Read More

Author(s): Kartik T Nakhate; Hemant R Badwaik; Ajazuddin

DOI:         Access: Open Access Read More

Author(s): Roshan Shahu; Bhavana Hirudkar; Shekhar Waikar; Arti Shanware

DOI:         Access: Open Access Read More

Author(s): Rakhi Sarpate; Priyanka Bhaisare; Poonam Patil; Arti Shanware

DOI:         Access: Open Access Read More

Author(s): Shital Nikhar; Shivani Dani; Pranita Kale; Shekhar Waikar; Rajesh Limsay

DOI:         Access: Open Access Read More

Author(s): Roshan Ramteke; Simran Kukreja; Shruti Motwani; Arti Shanware

DOI:         Access: Open Access Read More

Author(s): Anand Kar; Sunanda Panda

DOI:         Access: Open Access Read More