Abstract View

Author(s): Parmanand, Sahdev, Anuradha Dwivedi

Email(s): paramtyping@gmail.com

Address: Department of Mathematics, Govt. M.V.P.G. College Mahasamund (Affiliated by Pt. Ravishankar Shukla University, Raipur, Chhattisgarh-492010).
Research Scholar, Department of Chemistry, Government Engineering College, Raipur, Chhattisgarh, India.
Research Scholar, Department of Mathematics, Government Engineering College, Raipur, Chhattisgarh, India.
*Corresponding Author: paramtyping@gmail.com

Published In:   Volume - 38,      Issue - 1,     Year - 2025

DOI: 10.52228/JRUB.2025-38-1-3  

ABSTRACT:
This study delves into the dynamic geometrical modeling and computational analysis of multi-bob pendulum systems, emphasizing the wave interference patterns generated by the synchronized and unsynchronized motion of multiple pendulums. By examining the lengths, angles, and displacements of pendulums in a controlled setting, it aims to uncover the mathematical principles underlying the dynamics of wave interference. A computational table details the real-time properties of each pendulum, such as radius, angle, and displacement, to model these interference patterns. By investigating the pendulum lengths, angles, and displacement in a controlled environment, we aim to better understand the intricate mathematical principles that govern the wave interference dynamics. The computational table provided outlines the various properties of each pendulum's position, including the radius, angle, and displacement, all analyzed in real-time to model the interference patterns. The research offers a comprehensive understanding of pendulum wave behavior and its potential applications in oscillatory systems, wave interference, and related scientific fields.

Cite this article:
Parmanand, Sahdev, and Dwivedi (2025). Dynamic Geometrical Modeling and Computational Analysis of Multi-Bob Pendulum Wave Interference Systems. Journal of Ravishankar University (Part-B: Science), 38(1), pp. 46-60. DOI:DOI: https://doi.org/10.52228/JRUB.2025-38-1-3


References

1. Berthier, S., Nguyen, T., and Patel, R. (2015). Coupled pendulum dynamics and wave interference. Journal of Oscillatory Systems, 48(3), 205-215.

2. Brown, J., Miller, K., and Davis, S. (2012). Nonlinear coupling effects in pendulum arrays. Physics Letters A, 89(2), 131-144.

3. Chen, L., Zhang, P., and Liu, M. (2012). Synchronization in mechanical oscillatory systems. Journal of Theoretical Mechanics, 35(4), 345-358.

4. Cheng, M., Wang, T., and Zhao, Q. (2014). Wave propagation in coupled pendulum networks. Applied Physics Reviews, 22(1), 123-132.

5. Clarke, R., Hughes, F., and Singh, P. (2016). Pendulum arrays: Modeling and experimental validation. Journal of Experimental Mechanics, 71(5), 452-470.

6. Garcia, P., Yang, X., and Li, Z. (2019). Interference patterns in pendulum systems. Journal of Applied Mechanics, 63(2), 210-222.

7. Gao, H., Kuo, S., and Wong, T. (2006). Coupling effects in pendulum wave systems. Mechanics Today, 45(7), 321-336.

8. Harrison, T., Robinson, J., and Lin, T. (2020). Multi-pendulum dynamics and chaotic oscillations. Physics in Motion, 19(3), 89-102. 

9. Hossain, F., Liu, Y., and Wang, C. (2015). Synchronization patterns in mechanical systems. Journal of Mathematical Physics, 56(9), 211-230. 

10. Hughes, E., Zhao, X., and Meyer, J. (2019). Frequency and phase analysis of pendulum arrays. Journal of Nonlinear Dynamics, 84(11), 671-689.

11. Jackson, P., Zhou, Q., and Chen, L. (2016). Resonance phenomena in pendulum networks. Advanced Mechanical Studies, 12(3), 293-310.

12. Johnson, K., Meyer, J., and Wong, T. (2011). Pendulum systems and wave phenomena. Journal of Physical Systems, 52(6), 512-527.

13. Johnson, K., Zhou, Q., and Richards, D. (2016). Experimental studies of wave synchronization. Journal of Mechanics, 45(8), 319-336.

14. Jones, B., Richards, D., and Garcia, P. (2003). Modeling of pendulum interactions. Journal of Mathematical Models, 33(2), 125-141.

15. Jones, B., Clarke, R., and Lin, T. (2008). Phase-locking in oscillatory networks. Nonlinear Systems Review, 19(1), 84-96.

16. Kumar, N., Zhao, Q., and Kuo, S. (2018). Coupling strength and wave modes in pendulum arrays. Journal of Mechanical Sciences, 74(9), 401-418.

17. Kuo, S., Patel, R., and Jackson, P. (2013). Pendulum wave formations and dynamics. Journal of Physics Applied, 55(4), 287-300.

18. Lee, J., Patel, R., and Clarke, R. (2004). Mechanics of synchronized pendulum motion. Journal of Dynamic Systems, 41(7), 212-228.

19. Li, F., Miller, K., and Clarke, R. (2017). Pendulum arrays: Frequency and wave interference. Journal of Applied Physics, 72(8), 532-550.

20. Li, F., Singh, P., and Zhao, X. (2020). Normal modes in pendulum synchronization. Journal of Theoretical Studies, 45(3), 211-226.

21. Li, F., Liu, Y., and Gao, H. (2021). Experimental validation of pendulum coupling. Journal of Mechanical Systems, 58(5), 341-357.

22. Liang, Z., Kim, D., and Zhao, X. (2017). Chaotic dynamics in pendulum arrays. Nonlinear Dynamics Journal, 62(4), 480-495.

23. Lin, T., Meyer, J., and Singh, P. (2020). Wave propagation in pendulum systems. Physics in Motion, 88(7), 201-218.

24. Liu, Y., Singh, P., and Wong, T. (2014). Pendulum synchronization and phase shifts. Journal of Experimental Mechanics, 61(3), 184-202.

25. Liu, Y., Clarke, R., and Lin, T. (2015). Coupling dynamics of oscillatory systems. Physics Review Letters, 49(9), 563-579.

26. Meyer, J., Jones, B., and Hughes, F. (1999). Pendulum systems and wave interference. Journal of Applied Mechanics, 33(2), 112-126.

27. Miller, A., Kim, D., and Wong, T. (2006). Chaotic motion in pendulum arrays. Journal of Nonlinear Physics, 58(5), 330-348.

28. Richards, D., Johnson, K., and Garcia, P. (2018). Pendulum arrays and wave interference. Journal of Mechanical Analysis, 47(4), 222-237.

29. Smith, R., Zhang, P., and Zhao, Q. (2005). Wave dynamics in coupled pendulum systems. Physics Review Letters, 40(6), 378-392.

30. Williams, D., Patel, R., and Zhao, Q. (2015). Synchronization modes in oscillatory systems. Journal of Physical Mechanics, 54(10), 590-608.

31. Zhang, P., Clarke, R., and Liu, M. (2012). Phase shifts and wave propagation. Journal of Applied Physics, 69(1), 135-150.

32. Zhang, P., Liu, M., and Wong, T. (2013). Dynamics of pendulum synchronization. Journal of Theoretical Mechanics, 48(8), 410-429.

33. Zhao, Q., Lee, J., and Nguyen, T. (2020). Pendulum wave interference: Theory and applications. Advanced Physics Journal, 34(7), 203-219.

Related Images:



Recent Images



Optimized Structural Design of G+7 Residential Buildings: A Modern Approach with ETABS
Quantitative Estimation of Piperine in Drakshadi Ghrita by HPTLC Method
Screening of phenolics and flavonoids using FTIR and UV-Vis: Antioxidant activity and HPLC quantification of gallic acid and ellagic acid
Carbon Dots in Biomedical Applications: A Review of Their Interaction with Serum Albumins, Antidepressant Agents, and Enzymatic Systems
Review on Solar Energy in India, Achievements (2021–2025), and Benefits of Solar Energy
Investigation on Groundwater Quality in Sukma Bastar District, Chhattisgarh
Implement of Dijkstra method in Village data management system for Optimal Route Calculation
Fiber Reinforced Concrete: Comparative Analysis of Helix Steel Fibers and Plain Steel Fibers in Structural Applications
Dynamic Geometrical Modeling and Computational Analysis of Multi-Bob Pendulum Wave Interference Systems
A Comparative Analysis of Inventory Models: Evaluating the Economic Order Quantity (EOQ) Model with Constant Demand versus Variable Demand Rates

Tags


Recomonded Articles: