Abstract View

Author(s): Reshma, Bhanushree Gupta

Email(s): bgupta1517@gmail.com

Address: Center for Basic Sciences, Pt. Ravishankar Shukla University Raipur (C.G.), India 492010
*Corresponding author: bgupta1517@gmail.com

Published In:   Volume - 38,      Issue - 1,     Year - 2025

DOI: 10.52228/JRUB.2025-38-1-12  

ABSTRACT:
Carbon dots (CDs) are a type of carbon-based nanoparticles that can be categorized into subtypes based on their structure and morphology. These nanoparticles possess adjustable physical, chemical, and optical characteristics, which can be easily manipulated through simple one-pot synthesis methods. CDs are highly attractive due to their biocompatibility, non-toxic nature, resistance to photobleaching and chemical degradation, and cost-effectiveness, making them suitable for a wide array of applications. Their synthesis can be carried out using two main strategies: (i) top-down approaches and (ii) bottom-up approaches. Both strategies allow for the customization of chemical structures to achieve desired band gaps, doping with heteroatoms, and functional groups. Ongoing studies continue to shed light on how the structure of CDs influences their optical behavior. In the previous study, the interactions between bovine serum albumin (BSA) and human serum albumin (HSA) with antidepressant drugs—namely amitriptyline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ), and desipramine hydrochloride (DSP)—bioconjugated and acetylcholinestarase enzymes on carbon dots (CDs), were investigated using various spectroscopic techniques. The photoluminescence of CDs is influenced by several factors, including the synthesis route, precursor materials, surface characteristics, and the type of heteroatom doping. This review explores different synthesis techniques and examines the resulting optical, physical, chemical, and structural properties of CDs. Moreover, it discusses their potential applications in fields such as biomedicine, LEDs, anti-counterfeiting, and sensing, with particular emphasis on the challenges faced in sensing and possible solutions to address them.

Cite this article:
Reshma and Gupta (2025). Carbon Dots in Biomedical Applications: A Review of Their Interaction with Serum Albumins, Antidepressant Agents, and Enzymatic Systems. Journal of Ravishankar University (Part-B: Science), 38(1), pp. 172-188. DOI:DOI: https://doi.org/10.52228/JRUB.2025-38-1-12


References
  1. Kang C., Huang, Y. Yang H., Yan X. F., Ping Z.( 2020). A Review of Carbon Dots Produced from Biomass Wastes, 10: 2316
  2. Kaurav, H., Verma, D., Bansal, A., Kapoor, D. N., & Seth, S. (2023). Progress in drug delivery and diagnostic applications of carbon dots: A systematic review. Frontiers in Chemistry, 11, Article 1200891. https://doi.org/10.3389/fchem.2023.1200891
  3. Qian, Z. S., Chai, L. J., Huang, Y. Y., Tang, C., Shen, J. J., Chen, J. R., & Fen, H. (2015). A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosensors and Bioelectronics, 68, 675–680.
  4. Smajdor, J., Fendrych, K., & Ratusznik, A. G. (2025). Carbon materials in voltammetry: An overview of versatile platforms for antidepressant drug detection. Micromachines (Basel), 16(4), 423.
  5. Natarajan, K., Periyasamy, S., Na, J.-H., & Lee, T. Y. (2022). Simultaneous in-situ extraction and electrochemical detection of antidepressant drug imipramine and its active metabolite in human biofluid samples. Sensors and Actuators B: Chemical, 365, 131960.
  6. Reshma, S., Vaishanav, S. K., Yadav, T., Sinha, S., Tiwari, S., Satnami, M. L., & Ghosh, K. K. (2019). Antidepressant drug–protein interactions studied by spectroscopic methods based on fluorescent carbon quantum dots. Heliyon, 5, e01631.
  7. Reshma, Gupta, B., Sharma, R., & Ghosh, K. K. (2019). Facile and visual detection of acetylcholinesterase inhibitor by carbon dot-based. New Journal of Chemistry, 43, 9924–9933.
  8. Reshma, Vaishnav, S. K., Karbhal, I., Satnami, M. L., & Ghosh, K. K. (2018). Spectroscopic studies on in vitro molecular interaction of highly fluorescent carbon dots with different serum albumins. Journal of Molecular Liquids, 255, 279–287.
  9. Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological and Pharmaceutical Bulletin, 25(6), 695–704.
  10. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3, 397.
  11. Luo, M., Boudier, A., Pallotta, A., Maincent, P., Vincourt, J. B., & Leroy, P. (2016). Albumin as a carrier for NO delivery: Preparation, physicochemical characterization, and interaction with gold nanoparticles. Drug Development and Industrial Pharmacy, 42(11), 1771–1777
  12. De, S. H., Lacerda, P., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A., & Douglas, J. F. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano, 4(1), 365–379.
  13. Huang, S., Qiu, H., Xie, J., Huang, C., Su, W., Hu, B., & Xiao, Q. (2016). Functionalization of metal nanoclusters for biomedical applications. RSC Advances, 6, 44531–44545.
  14. Jacobs, C. B., Peairs, M. J., & Venton, B. J. (2010). Review: Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662, 105–127.
  15. Kumar, A., Lad, N., Pandya, A., & Agrawal, Y. K. (2016). Overview of nano-enabled screening of drug-facilitated crime: A promising tool in forensic investigation. Trends in Analytical Chemistry, 80, 458–468.
  16. Thomas, T., Mascarenhas, R. J., D’Souza, O. J., Martis, P., Dalhalle, J., & Swamy, B. E. K. (2013). Functionalized multiwalled carbon nanotube electrochemical sensor for determination of anticancer drug flutamide. Colloids and Surfaces B: Biointerfaces, 102, 223–229.
  17. Liu, L., Feng, F., Paau, M. C., Hu, Q., Liu, Y., Chen, Z., Bai, Y., Guo, F., & Choi, M. M. F. (2015). Use of carbon dots synthesized from citrate as a fluorescent probe for quercetin determination in tea and beer samples. Talanta, 144, 390–396..
  18. Czopek, A., Kołaczkowski, M., Bucki, A., Byrtus, H., Pawłowski, M., Kazek, G., Bojarski, A. J., Piaskowska, A., Tłuścik, J. K., Partyka, A., & Wesołowska, A. (2015). Novel spirohydantoin derivative as a potent multireceptor-active antipsychotic and antidepressant agent. Bioorganic & Medicinal Chemistry, 23, 3436–3445.
  19. V. I. Shubayev, T. R. Pisanic, S. Jin, (2009). Magnetic nanoparticles for theragnostics.Adv. Drug Delivery Rev., 61, 467. 
  20. Millan, M. J. (2006). Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacology & Therapeutics, 110, 135–370.
  21. Kouchakzadeh, H., Makarem, S. H., & Shojaosadati, S. A. (2016). Polyethylene glycol-chitosan oligosaccharide-coated superparamagnetic iron oxide nanoparticles: A novel drug delivery system for curcumin diglutaric acid. Nanomedicine Journal, 3, 35–44.
  22. Langer, K., Balthasar, S., Vogel, V., Dinauer, N., Briesen, H. V., & Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257, 169–180.
  23. Queiroz, R. G., Varca, G. H. C., Kadlubowski, S., Ulanski, P., & Lugão, A. B. (2016). Radiation-synthesized protein-based drug carriers: Size-controlled BSA nanoparticles. International Journal of Biological Macromolecules, 85, 82–89
  24. Bourassa, P., Dubeau, S., Maharvi, G. M., Fauq, A. H., Thomas, T. J., & Tajmir-Riahi, H. A. (2011). Locating the binding sites of anticancer tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen on bovine serum albumin. European Journal of Medicinal Chemistry, 46, 4344–4351.
  25. Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduction and Targeted Therapy, 8, Article 217.
  26. Mintz, K., Zhou, Y., & LeBlanc, R. M. (2019). Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 11, 4634–4652.
  27. Dolder, C., Nelson, M., & Stump, A. (2010). Pharmacological and clinical profile of newer antidepressants: Implications for the treatment of elderly patients. Drugs & Aging, 27, 625–638.
  28. George, E., Hanan, A., Mustafa, M. N., Walvekar, R., Mathkor, D. M., Haque, S., Numan, A., & Khalid, M. (2025). Carbon dot-based biosensors for continuous glucose monitoring in point-of-care devices: Advancements, challenges, and future prospects. Journal of The Electrochemical Society, 172, 047508.
  29. Jhonsi, M. A., Kathiravan, A., & Renganathan, R. (2009). Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 72, 167–172.
  30. Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S. Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17, 1225–1236.
  31. Joseph, D., Sachar, S., Kishore, N., & Chandra, S. (2015). Mechanistic insights into the interactions of magnetic nanoparticles with bovine serum albumin in presence of surfactants. Colloids and Surfaces B: Biointerfaces, 135, 596–603.
  32. Butler, J. E. (2000). Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods, 22, 4–23.
  33. Jang, C. H., Stevens, B. D., Carlier, P. R., Calter, M. A., & Ducker, W. A. (2002). Immobilized enzymes as catalytically-active tools for nanofabrication. Journal of the American Chemical Society, 124, 12114–12115..
  34. Barratt, G. (2003). Colloidal drug carriers: Achievements and perspectives. Cellular and Molecular Life Sciences, 60, 21–37.
  35. Dilson, S., Celia, M. C., Jayme, C. B., & Sonia, L. (2004). Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters, 147, 53–60.
  36. Shahabadi, N., & Hadidi, S. (2014). Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 100–108.
  37. Taboada, P., Gutiérrez, M., Pichel, R., & Mosquera, V. (2004). Effects of the molecular structure of two amphiphilic antidepressant drugs on the formation of complexes with human serum albumin. Biomacromolecules, 5, 1116–1123.
  38. Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., Liu, Z., & Zhang, H. (2005). Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 621–632.
  39. Choudhary, S., & Kishore, N. (2014). Drug–protein interactions in micellar media: Thermodynamic analysis. Journal of Colloid and Interface Science, 431, 118–126.
  40. Sulkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614, 227–232.
  41. Ovbude, S. T., Tao, P., Li, Z., & Hage, D. S. (2021). High-performance affinity chromatographic studies of repaglinide and nateglinide interactions with normal and glyoxal- or methylglyoxal-modified human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 201, 114097.
  42. Sebille, B., Zini, R., Vidal-Madjar, C., Thuaud, N., & Tillement, J.-P. (1990). Separation procedures used to reveal and follow drug–protein binding. Journal of Chromatography B: Biomedical Sciences and Applications, 531, 51–77.
  43. Li, L., Wu, R., Yan, G., Gao, M., Deng, C., & Zhang, X. (2016). A novel method to isolate protein N-terminal peptides from proteome samples using sulfhydryl tagging and gold-nanoparticle-based depletion. Analytical and Bioanalytical Chemistry, 408, 441–449.
  44. Huang, S., Qiu, H., Xie, J., Huang, C., Su, W., Hub, B., Xiao, Q. (2016). Functionalization of metal nanoclusters for biomedical applications. RSC Advances, 6, 44531–44551.
  45. Sahin, N. O., & Burgess, D. J. (2003). Preparation and characterization of biodegradable human serum albumin nanospheres. Il Farmaco, 58, 1017–1023..
  46. Byon, H. R., & Choi, H. C. (2006). Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. Journal of the American Chemical Society, 128, 2188–2189.
  47. Du, D., Chen, S., Song, D., Li, H., & Chen, X. (2008). Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosensors and Bioelectronics, 24, 475–480.
  48. Mukhametshina, A. R., Fedorenko, S. V., Zueva, I. V., Petrov, K. A., Masson, P., Nizameev, I. R., Mustafina, A. R., & Sinyashin, O. G. (2016). Sensing activity of cholinesterases through a luminescence response of the hexarhenium cluster complex [{Re6S8}(OH)6]4− Biosensors and Bioelectronics, 77, 871–877
  49. Tang, B., Wang, J., Hutchinson, J. A., Ma, L., Zhang, N., Guo, H., Hu, Z., Li, M., & Zhao, Y. (2016). Safety assessment of graphene-based materials: Focus on human health and the environment. ACS Nano, 10, 871–880.
  50. Shao, X., Ai, N., Xu, D., & Fan, X. (2016). Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb–drug interaction reports, computational analysis and experimental studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161, 1–8.
  51. Chang, J. C., Tomilson, I. D., Warnement, M. R., Iwamoto, H., De Fecile, L. J., Blakely, R. D., & Rosenthal, S. J. (2011). A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. Journal of the American Chemical Society, 133, 17528–17531.
  52. Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., Liu, Z., & Zhang, H. (2005). Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 629–632.
  53. Lang, Y., Geng, L., Lan, L., Sun, X., & Zhang, X. (2018). Interaction and energy transfer between carbon dots and serum human transferrin. Spectroscopy Letters, 51, 123–129.
  54. Jiwanti, P. K., Wardhana, B. Y., Sutanto, L. G., Dewi, D. M. M., Putri, I. Z. D., & Savitri, I. N. I. (2022). Recent development of nano-carbon material in pharmaceutical application: A review. Molecules, 27(21), 7578.
  55. Singh, J., Garg, T., Rath, G., & Goyal, A. K. (2015). Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – a critical review. Drug Delivery, 23(5), 1676–1698.
  56. Zhang, H., & Meyerhoff, M. E. (2006). Gold-coated magnetic particles for solid-phase immunoassays: Enhancing immobilized antibody binding efficiency and analytical performance. Analytical Chemistry, 78, 609–616.
  57. Shang, L., Wang, Y., Jiang, J., & Dong, S. (2007). pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: A spectroscopic study. Langmuir, 23, 2714–2721.

Related Images:



Recent Images



Optimized Structural Design of G+7 Residential Buildings: A Modern Approach with ETABS
Quantitative Estimation of Piperine in Drakshadi Ghrita by HPTLC Method
Screening of phenolics and flavonoids using FTIR and UV-Vis: Antioxidant activity and HPLC quantification of gallic acid and ellagic acid
Carbon Dots in Biomedical Applications: A Review of Their Interaction with Serum Albumins, Antidepressant Agents, and Enzymatic Systems
Review on Solar Energy in India, Achievements (2021–2025), and Benefits of Solar Energy
Investigation on Groundwater Quality in Sukma Bastar District, Chhattisgarh
Implement of Dijkstra method in Village data management system for Optimal Route Calculation
Fiber Reinforced Concrete: Comparative Analysis of Helix Steel Fibers and Plain Steel Fibers in Structural Applications
Dynamic Geometrical Modeling and Computational Analysis of Multi-Bob Pendulum Wave Interference Systems
A Comparative Analysis of Inventory Models: Evaluating the Economic Order Quantity (EOQ) Model with Constant Demand versus Variable Demand Rates

Tags


Recomonded Articles:

Author(s): Surendra G Gattani; Ravina Shete; Sandeep Ambore

DOI:         Access: Open Access Read More

Author(s): Naman Shukla; K. Anil Kumar; Madhu Allalla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-2         Access: Open Access Read More

Author(s): Srishti Verma; Visheshta Valvi; Kamlesh Kumar Shukla

DOI: 10.52228/JRUB.2022-35-1-6         Access: Open Access Read More

Author(s): Arushi Saloki; Taranjeet Kukreja; Sarita Gaikwad; Arvind Kumar; Ayush Parker; Bhavana Dowand; Chetna Sahu; Damini Mali; Swarnlata Saraf

DOI: 10.52228/JRUB.2023-35-2-3         Access: Open Access Read More

Author(s): Ankita Sahu; Manju Singh; Vishal Jain; Veenu Joshi; Amber Vyas

DOI: 10.52228/JRUB.2023-36-2-1         Access: Open Access Read More

Author(s): Yogesh Kumar Dongre; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-3         Access: Open Access Read More

Author(s): AR Sood and RC Rathor

DOI:         Access: Open Access Read More

Author(s): Gyanchandra Sahu; RK Pradhan

DOI:         Access: Open Access Read More

Author(s): R.Singh; U.C. Singh

DOI:         Access: Open Access Read More

Author(s): Dipti Sahu; D.P. Bisen; Nameeta Brahme; Kanchan Tiwari; Aastha Sahu

DOI: 10.52228/JRUB.2023-36-1-10         Access: Open Access Read More

Author(s): Vaibhav Dixit, Rajiv Nayan; Shubhra Sinha; Suryakant Manikpuri; Manmohan L. Satnami; Kallol K. Ghosh; Manas Kanti Deb; Shamsh Pervez; Indrapal Karbhal

DOI: 10.52228/JRUB.2023-36-2-5         Access: Open Access Read More

Author(s): SK Jadhav; A K Pati; M L Naik; Afaque Quraishi; Shashi Bhushan; Dinesh k Sharma; Chumpeshwar K Nishad

DOI:         Access: Open Access Read More

Author(s): Rashmi Swami; Sanjay Tiwari

DOI:         Access: Open Access Read More

Author(s): Priyanka Chakradhari; Atanu Kumar Pati; Arti Parganiha

DOI: 10.52228/JRUB.2024-37-1-2         Access: Open Access Read More

Author(s): R. Sirmour; M.L. Naik; M.P. Goutam

DOI:         Access: Open Access Read More