References
A.Y.-T.
Wang, R.J. Murdock, S.K. Kauwe, A.O. Oliynyk, A. Gurlo, J. Brgoch, K.A.
Persson, T.D. Sparks, Machine Learning for Materials Scientists: anintroductory
guide towards best practices, Chem. Mater. 32 (2020) 4954–4965, https://doi.org/10.1021/acs.chemmater.0c01907
C.J.
Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli,
M. Scheffler, New tolerance factor to predict the stability ofperovskite oxides
and halides, Sci. Adv. 5 (2019) 1–10, https://doi.org/10.1126/sciadv.aav0693
C.
Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. D¨oring, A.a.Bakulin, C.
Brzuska, R. Scheer, M.S. Pshenichnikov, W. Kowalsky, A. Pucci, R. Lovrinˇci´c,
Water infiltration in methylammonium lead iodide perovskite: fast and
inconspicuous, Chem. Mater. 27 (2015) 7835–7841, https://doi.org/10.1021/acs.chemmater.5b03883.
Ç.
Odabas¸ı, R. Yıldırım, Performance analysis of perovskite solar cells in
2013–2018 using machine-learning tools, Nanomater. Energy 56 (2019) 770–791, https://doi.org/10.1016/j.nanoen.2018.11.069.
Ç.
Odabas¸ı, R. Yıldırım, Assessment of reproducibility, hysteresis, and stability
relations in perovskite solar cells using machine learning, Energy Technol.
(2020), 1901449, https://doi.org/10.1002/ente.201901449.
Ç.
Odabas, R. Yıldırım, Machine learning analysis on stability of perovskite
solarcells, Sol. Energy Mater. Sol. Cells 205 (2020), 110284, https://doi.org/10.1016/j.solmat.2019.110284.
D.T.
Larose, C.D Larose, Discovering Knowledge in Data: An Introduction to Data Mining,
second ed., John Wiley & Sons, New Jersey, 2014.
F.
Sahli, J. Werner, B.A. Kamino, M. Br¨auninger, R. Monnard, B. Paviet-Salomon,
L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse,
M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Fully textured
monolithic perovskite/silicon tandem solar cells with 25.2% power conversion
efficiency, Nat. Mater. 17 (2018) 820–826, https://doi.org/10.1038/s41563-018-0115-4.
Green,
M., Ho-Baillie, A. and Snaith, H. (2014). The emergence of perovskite solar
cells. Nature Photon 8, 506–514.
H.S.
Kim, S.H. Im, N.G. Park, Organolead halide perovskite: new horizons in
solarcell research, J. Phys. Chem. C 118 (11) (2014) 5615–5625, https://doi.org/10.1021/jp409025w.
J.J.
Irwin, B.K. Shoichet, ZINC--a free database of commercially available compounds
for virtual screening, J. Chem. Inf. Model. 45 (2005) 177-182.
J.
Kirman, A. Johnston, D.A. Kuntz, M. Askerka, Y. Gao, P. Todorovi´c, D. Ma, G.
G. Priv´e, E.H. Sargent, Machine-learning-accelerated perovskite
crystallization, Matter 2 (2020) 938–947,
https://doi.org/10.1016/j.matt.2020.02.012.
J.
Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies learned from
machine learning to develop high-performing perovskite solar cells, Adv. Energy
Mater. 9 (2019) 1–10, https://doi.org/10.1002/aenm.201901891.
J.M.
Howard, E.M. Tennyson, B.R.A. Neves, M.S. Leite, Machine learning for
perovskites’ reap-rest-recovery Cycle, Joule 3 (2019) 325–337, https://doi.org/
10.1016/j.joule.2018.11.010.
J.W.
Tukey, Exploratory Data Analysis, Addison-Wesley Publishing Company, 1977.
J.
Yang, Y. Wang, T. Wu, S. Li, Correlating the composition-dependent structural
and electronic dynamics of inorganic mixed halide perovskites, Chem. Mater. 32
(2020) 2470–2481, https://doi.org/10.1021/acs.chemmater.9b04995.
K.
Choudhary, M. Bercx, J. Jiang, R. Pachter, D. Lamoen, F. Tavazza, Accelerated discovery
of efficient solar cell materials using quantum and machine-learning methods,
Chem. Mater. 31 (2019) 5900–5908, https://doi.org/10.1021/acs.chemmater.9b02166.
Lei
Zhang, Mu, He, Shaofeng Shao, Machine learning for halide perovskite materials,
Nano Energy 78 (2020) 105380, https://doi.org/10.1016/j.nanoen.2020.105380
M.
Johnsson, P. Lemmens, Crystallography and chemistry of perovskites, handbookof
magnetism and advanced magnetic materials, in: H. Kronmüller, S. Parkin
(Eds.),Volume 4: Novel Materials, John Wiley & Sons Ltd, Chichester, Uk,
2007, pp. 2098–2106 https://doi.org/10.1002/9780470022184.hmm411.
M.
Saliba, Polyelemental, multicomponent perovskite semiconductor libraries
through combinatorial screening, Adv. Energy Mater. 9 (2019), 1803754, https://doi.org/10.1002/aenm.201803754.
N.Z.
Koocher, D. Saldana-Greco, F. Wang, S. Liu, A.M. Rappe, Polarization dependence
of water adsorption to CH3NH3PbI3 (001) surfaces, J. Phys. Chem. Lett. 6 (2015)
4371–4378, https://doi.org/10.1021/acs.jpclett.5b01797.
O.
Allam, C. Holmes, Z. Greenberg, K.C. Kim, S.S. Jang, Density functional theory
- machine learning approach to analyze the bandgap of elemental
halideperovskites and ruddlesden-popper phases, ChemPhysChem 19 (2018)
2559–2565, https://doi.org/10.1002/cphc.201800382.
R. Jinnouchi, J.
Lahnsteiner, F. Karsai, G. Kresse, M. Bokdam, Phase transitions of hybrid
perovskites simulated by machine-learning force fields trained on the fly with
bayesian inference, Phys. Rev. Lett. 122 (2019), 225701,
https://doi.org/10.1103/PhysRevLett.122.225701.
S. Helal, Subgroup
Discovery Algorithms: A Survey and Empirical Evaluation, J. Comp. Sci. and
Tech. 31 (2016) 561-576.
V.M.
Goldschmidt, Die gesetze der Krystallochemie, Naturwissenschaften 14 (1926)
477–485, https://doi.org/10.1007/BF01507527.
Z.
Ren, S. Tian, T. Heumueller, E. Birgersson, F. Lin, A. Aberle, S. Sun, I.M.
Peters, R. Stangl, C.J. Brabec, T. Buonassisi, F. Oviedo, H. Xue, M. Thway, K.
Zhang, N. Li, J.D. Perea, M. Layurova, Y. Wang, Physics-guided characterization
and optimization of solar cells using surrogate machine learning model, in:
2019 IEEE 46th Photovolt. Spec. Conf., IEEE, 2019, pp. 3054–3058, https://doi.org/10.1109/PVSC40753.2019.8980715.