Abstract View

Author(s): Naman Shukla, K. Anil Kumar, Madhu Allalla, Sanjay Tiwari

Email(s): naman.shukla43@gmail.com

Address: Photonics Research Laboratory, S.O.S. in Electronics and Photonics, Pt. Ravishankar Shukla University Raipur, Chhattisgarh- 492010

Published In:   Volume - 35,      Issue - 1,     Year - 2022

DOI: 10.52228/JRUB.2022-35-1-2  

ABSTRACT:
Affordable manufacturing along with high efficiency perovskite solar cell in photovoltaic technology has everyone's attention. Perovskite, which is in the lead role in solar cells, is full of characteristics such as high absorption coefficient, low exciton binding energy, charge carrier capable of having better mobility as well as more diffusion length and availability in suitable energy band. The application of machine learning technology is proving to be a boon to ensure optimum implementation with different properties in photovoltaic device, design, simple construction process and low-cost price. Machine learning is a branch of artificial intelligence which includes large data aggregation, precise structure property installation, demonstration and final model after model validation. The most of the source of database is the simulation and experimental results, calculations and related literature surveys which have a comprehensive compilation of the performance of hybrid perovskite device, collection of structures and properties of elements. Structure-property relationship installation comes under feature engineering which establishes a clear relationship between structure and the properties. In other demonstration process, proper algorithms are selected, data is generated and tested as well as pure estimated values are taken. This article contains a detailed discussion on the involvement of machine learning technology to build high-performance Perovskite solar cells. Proper selection as well as designing of active perovskite absorbent layer by machine learning successfully establishes results by including other parts such as non-toxic (lead free) and stability. Mature machine learning technology becomes a very essential method in determining the solvent combination of hybrid perovskite and in estimating design of the entire solar cell to ensure optimum implementation in the sector of perovskite solar technology. Finally, a phased concept has been briefly discussed to meet the challenges of machine learning and potential future compatibilities related to the prevalence.

Cite this article:
Shukla, Kumara, Allalla, Tiwari (2022). Analysis of High Efficient Perovskite Solar Cells Using Machine Learning. Journal of Ravishankar University (Part-B: Science), 35(1), pp. 09-15DOI: https://doi.org/10.52228/JRUB.2022-35-1-2


References

A.Y.-T. Wang, R.J. Murdock, S.K. Kauwe, A.O. Oliynyk, A. Gurlo, J. Brgoch, K.A. Persson, T.D. Sparks, Machine Learning for Materials Scientists: anintroductory guide towards best practices, Chem. Mater. 32 (2020) 4954–4965, https://doi.org/10.1021/acs.chemmater.0c01907  

C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability ofperovskite oxides and halides, Sci. Adv. 5 (2019) 1–10, https://doi.org/10.1126/sciadv.aav0693

C. Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. D¨oring, A.a.Bakulin, C. Brzuska, R. Scheer, M.S. Pshenichnikov, W. Kowalsky, A. Pucci, R. Lovrinˇci´c, Water infiltration in methylammonium lead iodide perovskite: fast and inconspicuous, Chem. Mater. 27 (2015) 7835–7841, https://doi.org/10.1021/acs.chemmater.5b03883.

Ç. Odabas¸ı, R. Yıldırım, Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools, Nanomater. Energy 56 (2019) 770–791, https://doi.org/10.1016/j.nanoen.2018.11.069.

Ç. Odabas¸ı, R. Yıldırım, Assessment of reproducibility, hysteresis, and stability relations in perovskite solar cells using machine learning, Energy Technol. (2020), 1901449, https://doi.org/10.1002/ente.201901449.

Ç. Odabas, R. Yıldırım, Machine learning analysis on stability of perovskite solarcells, Sol. Energy Mater. Sol. Cells 205 (2020), 110284, https://doi.org/10.1016/j.solmat.2019.110284.

D.T. Larose, C.D Larose, Discovering Knowledge in Data: An Introduction to Data Mining, second ed., John Wiley & Sons, New Jersey, 2014.

F. Sahli, J. Werner, B.A. Kamino, M. Br¨auninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Mater. 17 (2018) 820–826, https://doi.org/10.1038/s41563-018-0115-4.

Green, M., Ho-Baillie, A. and Snaith, H. (2014). The emergence of perovskite solar cells. Nature Photon 8, 506–514.

H.S. Kim, S.H. Im, N.G. Park, Organolead halide perovskite: new horizons in solarcell research, J. Phys. Chem. C 118 (11) (2014) 5615–5625, https://doi.org/10.1021/jp409025w.

J.J. Irwin, B.K. Shoichet, ZINC--a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005) 177-182.

J. Kirman, A. Johnston, D.A. Kuntz, M. Askerka, Y. Gao, P. Todorovi´c, D. Ma, G. G. Priv´e, E.H. Sargent, Machine-learning-accelerated perovskite crystallization, Matter 2 (2020) 938–947, https://doi.org/10.1016/j.matt.2020.02.012.

J. Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells, Adv. Energy Mater. 9 (2019) 1–10, https://doi.org/10.1002/aenm.201901891.

J.M. Howard, E.M. Tennyson, B.R.A. Neves, M.S. Leite, Machine learning for perovskites’ reap-rest-recovery Cycle, Joule 3 (2019) 325–337, https://doi.org/ 10.1016/j.joule.2018.11.010.

J.W. Tukey, Exploratory Data Analysis, Addison-Wesley Publishing Company, 1977.

J. Yang, Y. Wang, T. Wu, S. Li, Correlating the composition-dependent structural and electronic dynamics of inorganic mixed halide perovskites, Chem. Mater. 32 (2020) 2470–2481, https://doi.org/10.1021/acs.chemmater.9b04995.

K. Choudhary, M. Bercx, J. Jiang, R. Pachter, D. Lamoen, F. Tavazza, Accelerated discovery of efficient solar cell materials using quantum and machine-learning methods, Chem. Mater. 31 (2019) 5900–5908, https://doi.org/10.1021/acs.chemmater.9b02166.

Lei Zhang, Mu, He, Shaofeng Shao, Machine learning for halide perovskite materials, Nano Energy 78 (2020) 105380, https://doi.org/10.1016/j.nanoen.2020.105380

M. Johnsson, P. Lemmens, Crystallography and chemistry of perovskites, handbookof magnetism and advanced magnetic materials, in: H. Kronmüller, S. Parkin (Eds.),Volume 4: Novel Materials, John Wiley & Sons Ltd, Chichester, Uk, 2007, pp. 2098–2106 https://doi.org/10.1002/9780470022184.hmm411.

M. Saliba, Polyelemental, multicomponent perovskite semiconductor libraries through combinatorial screening, Adv. Energy Mater. 9 (2019), 1803754, https://doi.org/10.1002/aenm.201803754.

N.Z. Koocher, D. Saldana-Greco, F. Wang, S. Liu, A.M. Rappe, Polarization dependence of water adsorption to CH3NH3PbI3 (001) surfaces, J. Phys. Chem. Lett. 6 (2015) 4371–4378, https://doi.org/10.1021/acs.jpclett.5b01797.

O. Allam, C. Holmes, Z. Greenberg, K.C. Kim, S.S. Jang, Density functional theory - machine learning approach to analyze the bandgap of elemental halideperovskites and ruddlesden-popper phases, ChemPhysChem 19 (2018) 2559–2565, https://doi.org/10.1002/cphc.201800382.

R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, M. Bokdam, Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with bayesian inference, Phys. Rev. Lett. 122 (2019), 225701, https://doi.org/10.1103/PhysRevLett.122.225701.

S. Helal, Subgroup Discovery Algorithms: A Survey and Empirical Evaluation, J. Comp. Sci. and Tech. 31 (2016) 561-576.

V.M. Goldschmidt, Die gesetze der Krystallochemie, Naturwissenschaften 14 (1926) 477–485, https://doi.org/10.1007/BF01507527.

Z. Ren, S. Tian, T. Heumueller, E. Birgersson, F. Lin, A. Aberle, S. Sun, I.M. Peters, R. Stangl, C.J. Brabec, T. Buonassisi, F. Oviedo, H. Xue, M. Thway, K. Zhang, N. Li, J.D. Perea, M. Layurova, Y. Wang, Physics-guided characterization and optimization of solar cells using surrogate machine learning model, in: 2019 IEEE 46th Photovolt. Spec. Conf., IEEE, 2019, pp. 3054–3058, https://doi.org/10.1109/PVSC40753.2019.8980715.

Related Images:



Recent Images



OLED: New Generation Display Technology
Parametric study of AlGAN/GaN UV-Led Based on Quantum Confined Stark Effect (QCSE)
Analysis of High Efficient Perovskite Solar Cells Using Machine Learning
Inverted Bulk Heterojunction (BHJ) Polymer (PCDTBT-PC70BM) Solar Photovoltaic Technology
Design and Device Modeling of Lead Free CsSnI3 Perovskite Solar Cell
Study of Design and Device Modeling of Double layered Perovskite Solar Cells
Screening Some Extracellular Enzymes of Wild Mushrooms from Pt. Ravishankar Shukla University Campus
Quantum Dots and Nanohybrids and their Various Applications: A Review
Species of Termitomyces (Agaricales) Occurring in Achanakmar Biosphere Reserve, Chhattisgarh
Introduction to Cloud Storage Services

Tags


Recomonded Articles:

Author(s): Yogesh Kumar Dongre* and Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-10         Access: Open Access Read More

Author(s): B GopalKrishna; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-1         Access: Open Access Read More

Author(s): Naman Shukla*; Dharamlal Prajapati; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-8         Access: Open Access Read More

Author(s): Surendra G Gattani; Ravina Shete; Sandeep Ambore

DOI:         Access: Open Access Read More

Author(s): S. Bera; K. Thakur; P. Vyas; .M.Thakur; A. Shrivastava

DOI: 10.52228/JRUB.2021-34-1-3         Access: Open Access Read More

Author(s): Gajendra Singh Rathore; B. Gopal Krishna; R.N. Patel; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-13         Access: Open Access Read More

Author(s): AR Sood and RC Rathor

DOI:         Access: Open Access Read More

Author(s): R.Singh; U.C. Singh

DOI:         Access: Open Access Read More

Author(s): Armiya Sultan; Saba Taj; Vivek Choudhary; Arti Parganiha

DOI: 10.52228/JRUB.2017-30-1-14         Access: Open Access Read More

Author(s): D.K. Sen; S. Bhushan

DOI:         Access: Open Access Read More

Author(s): N.K. Gupta; G.K. Tiwari; S.K. Srivastava; H.V. Tiwary

DOI:         Access: Open Access Read More

Author(s): R. Sirmour; M.L. Naik; M.P. Goutam

DOI:         Access: Open Access Read More

Author(s): R. Sridhar; U.C. Singh

DOI:         Access: Open Access Read More