Altazin,S., Stepanova, L.,Werner, J., Niesen, B., Ballif, C., and Ruhstaller, B.(2018). Design of Perovskite/Crystalline-Silicon Monolithic Tandem Solar Cells. Opt. Express, 26: A579-A590.
Courtier, N.E., Richardson, G., and Foster, J.M., (2018).A Fast and Robust Numerical Scheme for Solving Models of Charge Carrier Transport and Ion Vacancy Motion in PerovskiteSolar Cells. Appl. Math. Model., 63: 329−348.
Eames, C., Frost, J.M, Barnes, P., O’Regan, B.C., Walsh, A., and Islam, M.S.,(2015). Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells. Nat. Commun.,6: 7497.
Krishna, B. G., Rathore, G. S.,Shukla, N., and Tiwari, S. (2020). Perovskite solar cells: A review of architecture, processing methods, and future prospects, in: Khan I., Khan A. (Eds.), Hybrid Perovskite Composite Materials Design to Applications. Woodhead Publishing, Elsevier, Duxford, pp. 375-412.
Kumar, N., and Uddin, A., (2016). Hysteresis in organic-inorganic hybrid perovskite solar cells. Solar Energy Materials &SolarCells, 157: 476–509.
Lee, H., Gaiaschi, S., Chapon, P., Marronnier, A., Lee, A., Vanel, J.C., Tondelier, D., Bouree, J.E., Bonnassieux, Y., and Geffroy, B., (2017). Direct ́ Experimental Evidence of Halide Ionic Migration under Bias in CH3NH3PbI3−xClx Based Perovskite Solar Cells Using GD-OES Analysis. ACS Energy Lett., 2: 943−949.
Perez, E.J.J., Sanchez, R.S., Badia, L.,Belmonte, G.G., Kang, Y.S., Sero, I.M., and Bisquert, J., (2014). Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. J. Phys. Chem. Lett, 5: 2390−2394.
Quiroz, C. O. R, Shen, Y., Salvador, M., Forberich, K., Schrenker, N., Spyropoulos, G., Heumüller, T., Wilkinson, B., Kirchartz, T., Spiecker, E., Verlinden,P.J., Zhang ,X., Green, M.A, Baillie, A.H., and Brabec, C.J., (2018). Balancing electrical and optical losses for efficient 4-terminal Si-perovskite solar cells with solution processed percolation electrodes. J. Mater. Chem. A., 6: 3583− 3592(2018).
Reenen, S.V., Kemerink, M., and Snaith, H.J., (2015). Modeling Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett., 6: 3808−3814.
Richardson, G., Kane, S.E., Niemann, R.G., Peltola, T.A., Foster, J.M., Cameron, P.J., and Walker, A.B.,(2016). Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci., 9: 1476−1485.
Snaith,H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski,K., and Zhang, W. (2014) .Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett., 5: 1511−1515.
Tiwari, S., Tiwari, T., Carter, S.A., Scott, J.C., and Yakhmi, J.V., (2018). Advances in Polymer-Based Photovoltaic Cells: Review of Pioneering Materials, Design, and Device Physics.Handbook of Ecomaterials. Springer Nature, pp 1055-1101.
Tiwari, S., Yakhmi, J. V., Carter, S.A., and Scott, J.C., (2017). Optimization of Bulk heterojunction Organic Photovoltaic Devices. Handbook of Ecomaterials Springer Nature. 18: 66-1
Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., and Gratzel, M., (2015). Understanding the Rate-Dependent ̈ J−V Hysteresis, Slow Time Component, and Aging in CH3NH3PbI3Perovskite Solar Cells: The Role of a Compensated Electric Field. Energy Environ. Sci., 8: 995−1004.
Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G. , and Wei, S.H., (2015). Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angew.Chem., Int. Ed., 54: 1791−1794.