References:
Green, M. A., Zhao, J.,
Wang, A., & Wenham, S. R. (2001). Progress and outlook for high-efficiency
crystalline silicon solar cells. Solar Energy Materials and Solar Cells,
65(1-4), 9-16.
Bhattacharya, S., &
John, S. (2019). Beyond 30% conversion efficiency in silicon solar cells: a
numerical demonstration. Scientific reports, 9(1), 1-15.
Verma, A.K., et al. (2017).
Recent Advances in Polymer Solar Cells. Materials Research Foundations, 10,
299–309. DOI: http://dx.doi.org/10.21741/9781945291371-10
Sahu, Awasthy, Patel, Verma
and Tiwari (2017). Enhanced Photovoltaic Performance Of Dye-Sensitized Solar
Cells Via Sensitization of Nanocrystalline Tio2 films With Metal
-Free Indoline Dye. Journal of Ravishankar University (Part-B: Science), 30(1),
pp.78-8. DOI: 10.52228/JRUB.2017-30-1-10
Patel, M., Sahu, S., Verma,
A. K., Agnihotri, P., Singh, S. P., Narayan, R., & Tiwari, S.(2017). Quantum dot as light harvester nanocrystals
for solar cell applications. DOI: http://dx.doi.org/10.21741/9781945291371-4
Roy, P., Sinha, N. K., Tiwari, S., & Khare, A.
(2020). A review on perovskite solar cells: Evolution of architecture,
fabrication techniques, commercialization issues and status. Solar Energy, 198,
665-688.
Snaith, H. J. (2013).
Perovskites: the emergence of a new era for low-cost, high-efficiency solar
cells. The Journal of Physical Chemistry Letters, 4(21), 3623-3630.
Tan, K. W., et al. (2014).
Thermally induced structural evolution and performance of mesoporous block
copolymer-directed alumina perovskite solar cells. ACS nano, 8(5), 4730-4739.
Unger, E. L., et al.
(2014).Hysteresis and transient behavior in current–voltage measurements of
hybrid-perovskite absorber solar cell. Energy and Environment Science, 11,
2014.
Yin, W. J., Shi, T., Yan,
Y. (2014). Unique properties of halide perovskites as possible origins of the
superior solar cell performance. Advanced Materials, 26(27), 4653-4658.
Vidyasagar, C. C.,
Blanca, M. M. Víctor M. J., (2018). Recent Advances in Synthesis
and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano Micro
Letters, 10:68.
Volonakis, G., et al. (2016). Lead-free halide
double perovskites via heterovalent substitution of noble metals. J. Phys.
Chem. Lett, 7(7), 1254-1259.
Zhou, H., et al. (2014).
Interface engineering of highly efficient perovskite solar cells. Science,
345(6196), 542-546.
Verma, A. K., Shukla, N., & Tiwari, S. (2020).
Effect of ZnO ETL and MoO3 HTL with PCDTBT: PC70BM-based
BHJ organic solar cells. Nanomaterials and Energy, 9(2), 245-252. DOI: https://doi.org/10.1680/jnaen.18.00021
Shukla, Kumara, Allalla, Tiwari (2022). Analysis of
High Efficient Perovskite Solar Cells Using Machine Learning. Journal of
Ravishankar University (Part-B: Science), 35(1), pp. 09-15. DOI:
10.52228/JRUB.2021-34-1-10
Di Giacomo, F., Fakharuddin, A., Jose, R., &
Brown, T. M. (2016). Progress, challenges and perspectives in flexible
perovskite solar cells. Energy & Environmental Science, 9(10), 3007-3035.
Bi, S., Leng, X., Li, Y., Zheng, Z., Zhang, X., Zhang,
Y., & Zhou, H. (2019). Interfacial modification in organic and perovskite
solar cells. Advanced Materials, 31(45), 1805708.
Cheng, Y., Peng, Y., Jen, A. K. Y., & Yip, H. L.
(2022). Development and challenges of metal halide perovskite solar modules.
Solar RRL, 6(3), 2100545.
Rothmann, M. U., Li, W., Etheridge, J., & Cheng,
Y. B. (2017). Microstructural characterizations of perovskite solar cells–from
grains to interfaces: Techniques, features, and challenges. Advanced Energy
Materials, 7(23), 1700912.
Ansari, M. I. H., Qurashi, A., & Nazeeruddin, M.
K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells:
A critical review. Journal of Photochemistry and Photobiology C:
Photochemistry Reviews, 35, 1-24.
Qiu, L., Ono, L. K., & Qi, Y. (2018). Advances and
challenges to the commercialization of organic–inorganic halide perovskite
solar cell technology. Materials today energy, 7, 169-189.