Abstract View

Author(s): Monika Swami, Kinjal Patel

Email(s): monika.swami@sal.edu.in

Address: Department of Chemical Engineering, SAL College of Engineering, Ahmadabad, 380060, India
Department of Chemical Engineering, SAL Engineering and Technical Institute, Ahmadabad, 380060, India

Published In:   Volume - 34,      Issue - 1,     Year - 2021

DOI: 10.52228/JRUB.2021-34-1-2  

ABSTRACT:
Gallium is an vital rare metal mainly because of its growing demand in different domain of life. It has wide applications. Gallium is considered as the backbone of the electronics industry. The supply and demand of gallium-bearing products has gradually increased during the past decade. Therefore, from the environmental stand point the need for sensitive and reliable methods for determining trace concentrations of gallium has become apparent in various fields. Gallium has become increasingly popular as a substrate material for electronic devices. Aside from ore, gallium can be obtained from such industrial sources as the Bayer process caustic liquor that is a byproduct of bauxite processing, flue dust removed from the fume-collection system in plants that produce aluminum by the electrolytic process, zinc refinery residues, gallium scrap materials, and coal fly ash. The purification process for gallium can start with solvent-extraction processes where the concentrations of impurities, especially metals, are reduced to the ppm range. The main aim of this paper is to simply put up the salient facts regarding gallium and identify applicable sources of information thereby one may create a suitable environment for the development of methods for the production of gallium via leaching through various waste samples.

Cite this article:
swami and Patel (2021). Need of Gallium Recovery from Waste Samples: A Review. Journal of Ravishankar University (Part-B: Science), 34(1), pp. 09-18.DOI: https://doi.org/10.52228/JRUB.2021-34-1-2


C.R. Chitambar, Medical applications and toxicities of gallium compounds, Int. J. Environ. Res. Public Health 7 (2010) 2337–2361.

D.A. Kamer, Report of United States Bureau of Mines (1988) 9208.

D.L. Smith, H.J. Caul, Alloys of gallium with powdered metals as possible replacement for dental amalgams, J. Am. Dent. Assoc. 53 (1956) 315–324.

H. Filik, M. Dogutan, E. Tutem and R. Apak Spectrophotometric determination of gallium (III) with rutin. Anal. Sci., 2002, 18(8), 955-957

H. Minamisawa, S. Iizima, M. Minamisawa, S. Tanaka, N. Arai and M. Shibukawa Preconcentration of gallium by coprecipitation with synthetic zeolites prior to determination by electrothermal atomic absorption spectrometry.    Anal. Sci., 2004, 20(4), 683-687

K. P. P. R. M. Reddy, V. K. Reddy and P. R. Reddy Selective second order derivative spectrophotometric method for the determination of gallium(III) in presence of large excess of indium(III). , Anal. Lett., 2007, 40(10-12), 2374-2383

Kh. D. Nagiev, F. V. Kulieva and D. G. Gambarov Photometric determination of gallium in the presence of aluminum.  J. Anal. Chem. (Transl. Zh. Anal. Khim.), 2007, 62(8), 730-732

L. Q. Wang LihuaJianyan, Huaxue Fence Photometric determination of gallium in coal gangue. , 2003, 39(11), 659-66

M.Frenzel, M. Ketris, T. Seifert, & J. Gutzmer, “On the current and future availability of gallium”, Resources Policy, 47 (2016) 38-50.

N. K. Agnihotri, V. K. Singh, S. Ratnani, S. K. Shukla and G. K. Parashar A method for non-extractive simultaneous determination of thallium(III) and gallium(III) in environmental and standard samples with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in cationic micellar medium. Anal. Lett., 2004, 37(12), 2515-2529

R.R. Moskalyk, Gallium: the backbone of the electronics industry, Miner. Eng. (2003) 921–929.

S. K. Mohamed Ion-selective electrode for gallium determination in nickel alloy, fly-ash and biological samples, Anal. Chim. Acta, 2006, 562(2), 204-209

S. Xiao-quan, W. Wen, W. Bei, Determination of gallium in coal and coal fly ash by electrothermal atomic absorption spectrometry using slurry sampling and nickel chemical modification, J. Anal. Atom. Spectrom. 7 (1992) 761–764.

Tatsuya Kawakatsu;  Yoshikazu Fujita; Takako Matsuo Selective Spectrophotometric Determination of Gallium(III) with 2-(5-Bromo-2-Pyridylazo)-5- Diethylaminophenol in the Presence of Sodium Dodecylsulfate and BRIJ 35   Itsuo Mori;  Analytical Letters, Volume 32, Issue 1999 , pages 613 – 622.

Tsuo Mori;  Yoshikazu Fujita;  Kinuko Fujita;  Takeshi Tanaka;  Yoshihiro Nakahashi; Mayumi Iizuka The Spectrophotometric Determination of gallium (III) Using O Hydroxyhydroquinonephathalein in the Presence of Surfactant Micellar ,Analytical Letters, Volume 21, Issue February 1988 , pages 279 – 296.

 W.F. Hillebrand, Applied Inorganic Analysis with Special Reference to the Analysis of Metals, Minerals, and Rocks, Wiley, (1968)259–272.

Related Images:



Recent Images



Study of the Enhanced Efficiency of Crystalline Silicon Solar Cells by Optimizing Anti Reflecting Coating using PC1D Simulation
Formulation of Topical Itraconazole Nanostructured Lipid Carriers (Nlc) Gel for Onychomycosis
Cosmetic Testing Equipment: Device and Types of Equipment for Dermatological Evaluation for Women’s Skin
Oxidative stress: Insights into the Pathogenesis and Treatment of Alopecia
UV Spectroscopy Analysis for Itraconazole
Challenges and Potential of Perovskite Solar Cells
Kinetic Study of Solvent Effect on the Hydrolysis of  Mono-3, 5-Dimethylaniline Phosphate
OLED: New Generation Display Technology
Parametric study of AlGAN/GaN UV-Led Based on Quantum Confined Stark Effect (QCSE)
Analysis of High Efficient Perovskite Solar Cells Using Machine Learning

Tags


Recomonded Articles:

Author(s): Monika Swami; Kinjal Patel

DOI: 10.52228/JRUB.2021-34-1-2         Access: Open Access Read More

Author(s): Manas Kanti Deb; Mithlesh Mahilang; Jayant Nirmalkar

DOI: 10.52228/JRUB.2017-30-1-2         Access: Open Access Read More

Author(s): Sayan Biswas; Joydeb Chanda; Amrendra Tiwari; Pulok K Mukherjee

DOI:         Access: Open Access Read More

Author(s): Princy Dugga; Shamsh Pervez; Rakesh Kumar Sahu; Madhuri Verma; Shahina Bano; Manas Kanti Deb

DOI: 10.52228/JRUB.2017-30-1-5         Access: Open Access Read More

Author(s): Shekhar Patra; Sanjay Tiwari; Umang Singh

DOI: 10.52228/JRUB.2022-35-1-10         Access: Open Access Read More

Author(s): A P Kashid; R T Patil; N B Patil; S H Chavan

DOI:         Access: Open Access Read More

Author(s): Gamini Sahu; Aditi Niyogi Poddar

DOI:         Access: Open Access Read More

Author(s): Shiv Shankar Shukla; Ravindra Pandey; Swarnalata Saraf; Shailendra Saraf

DOI:         Access: Open Access Read More

Author(s): P.V.N. Rao; A.T. Rao

DOI:         Access: Open Access Read More

Author(s): Archana Sharma; M.L. Naik

DOI:         Access: Open Access Read More

Author(s): Sachchidanand Shukla; Geeta Singh; Laxmi Kant Singh

DOI:         Access: Open Access Read More

Author(s): Ravishankar Chauhan; Afaque Quraishi; S K Jadhav; Keshav Kant Sahu

DOI:         Access: Open Access Read More

Author(s): JK Nandagawe; PK Patil; RD Lawangar-Pawer

DOI:         Access: Open Access Read More

Author(s): Preeti Lata Minz; Vijaya Koche

DOI:         Access: Open Access Read More