References
Ahmad, M.B.,
Shameli, K., Darroudi, M., Wan Yunus, W.M.Z., and Ibrahim, N.A. (2009).
Synthesis and characterization of
silver/clay nanocomposites by chemical reduction method. American Journal of Applied Sciences, 6:
1909-1914.
Ainsworth,
E.A., and Gillespie, K.M. (2007). Estimation of total phenolic content and
other oxidation substrates in plant tissues
using Folin–Ciocalteu reagent. Nature Protocols, 2:
875-877.
Anjum, A., and Quraishi, A.
(2023). Enhanced epicurzerenone production via in vitro elicitation of microrhizomes of Curcuma caesia Roxb. In Vitro Cellular & Developmental
Biology-Plant, 59: 1-14.
Anjum, A.,
Singh, V., Adil, S., and Quraishi, A.
(2022). In vitro propagation of Curcuma caesia Roxb. via bud culture technique and ISSR profiling of
the plantlets for genetic homogeneity. Research Journal
of Biotechnology, 17:
48-54.
Baghel, S.,
Baghel, R., Sharma, K., and Sikarwar, I. (2013). Pharmacological activities of Curcuma caesia. International Journal of Green Pharmacy, 7: 1-5.
Benya, A.,
Mohanty, S., Hota, S., Das, A.P., Rath, C.C., Achary, K.G., and Singh, S.
(2023). Endangered Curcuma caesia
Roxb.: Qualitative and quantitative analysis for identification of industrially
important elite genotypes. Industrial Crops and Products, 195:
116363.
Blois, M.S.
(1958). Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199- 1200.
Borah, A., Paw,
M., Gogoi, R., Loying, R., Sarma, N., Munda, S., Pandey, S.K., and Lal,
M. (2019).
Chemical composition, antioxidant, anti-inflammatory, anti-microbial and
in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North
East India. Industrial crops and products, 129:
448-454.
Chauhan, R.,
Keshavkant, S., and Quraishi, A. (2018). Enhanced production of diosgenin
through elicitation in micro-tubers of Chlorophytum
borivilianum Sant. et Fernand. Industrial
Crops and Products, 113:
234-239.
Chirangini,
P., Sinha, S.K., and Sharma, G.J. (2005). In
vitro propagation and microrhizome induction in Kaempferia galangal Linn. and K.
rotunda Linn. Indian Journal of
Biotechnology, 4:.404-408.
Chung, I.M.,
Rekha, K., Rajakumar, G., and Thiruvengadam, M. (2018). Elicitation of silver
nanoparticles enhanced the secondary metabolites and pharmacological activities
in cell suspension cultures of bitter gourd. 3 Biotech, 8: 1-2.
Cittrarasu, V., Balasubramanian, B.,
Kaliannan, D., Park, S., Maluventhan, V., Kaul, T., Liu, W.C., and
Arumugam, M. (2019). Biological
mediated Ag nanoparticles from Barleria
longiflora for antimicrobial activity and photocatalytic degradation using
methylene blue. Artificial Cells, Nanomedicine, and Biotechnology, 47:
2424-2430.
Donipati, P., and
Sreeramulu, S.H. (2015).
In vitro bioevaluation of antioxidant activity
in Curcuma longa. International Journal of Innovative
Pharmaceutical Sciences and Research 3:
1238-1243.
Elegbede, J.A., Lateef, A., Azeez, M.A.,
Asafa, T.B., Yekeen, T.A., Oladipo, I.C Adebayo, E.A., Beukes, L.S.,
and Gueguim‐Kana, E.B. (2018). Fungal xylanases‐mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnology, 12: 857-863.
Geoprincy,
G., Srri, B.V., Poonguzhali, U., Gandhi, N.N., and Renganathan, S. (2013). A
review on green synthesis of silver
nanoparticles. Asian Journal of
Pharmaceutical and Clinical Research, 6:
8-12.
Ghorai, N.,
Chakraborty, S., Gucchait, S., Saha, S.K., and Biswas, S. (2012). Estimation of
total terpenoids concentration in plant
tissues using a monoterpene,
Linalool as standard reagent. Protocol Exchange, 5:
1-5.
Hasan, M., Sajjad, M., Zafar, A.,
Hussain, R., Anjum, S.I., Zia, M., Ihsan, Z., and Shu, X. (2022). Blueprinting morpho-anatomical
episodes via green silver nanoparticles foliation. Green Processing and Synthesis, 11: 697-708.
Karmakar,
I., Dolai, N., Saha, P., Sarkar, N., Bala, A., and Haldar, P.K. (2011.)
Scavenging activity of Curcuma caesia
rhizome against reactive oxygen and nitrogen species. Oriental Pharmacy and Experimental Medicine, 11: 221-228.
Keshari, A.K.,
Srivastava, R., Singh, P., Yadav, V.B., and Nath, G. (2020). Antioxidant and
antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of
Ayurveda and Integrative Medicine 11:
37-44.
Khattab, S.,
Alkuwayti, M.A., Yap, Y.K., Meligy, A.M., Bani Ismail, M., and El Sherif, F.
(2023). Foliar spraying of ZnO nanoparticals on Curcuma longa had
increased growth, yield, expression of curcuminoid synthesis
genes, and curcuminoid accumulation. Horticulturae, 9: 355.
Kim, S.H.,
and Kim, S.K. (2002). Effect of sucrose level and nitrogen source on
fresh weight and anthocyanin production in cell suspension
culture of ‘Sheridan’ Grape (Vitis spp).
Journal
of Plant Biotechnology, 4:
2327-2330.
Logeswari, P., Silambarasan, S., and
Abraham, J. (2013). Ecofriendly synthesis of silver nanoparticles from commercially available plant
powders and their antibacterial properties. Scientia Iranica, 20: 1049-1054.
Mamidi, G.,
and Polaki, S.J. (2019). Synthesis and characterization of biogenic silver
nanoparticles and its antimicrobial analysis. Journal
of Applied Chemistry, 8: 112-123.
Mehta, U.J., Krishnamurthy, K.V., and Hazra, S. (2000). Regeneration of
plants via adventitious bud formation from mature zygotic embryo axis of
tamarind (Tamarindus indica
L.). Current Science, 78:
1231-1234.
Mukunthan,
K.S., Balaji, B., and Patel, T.N. (2018). Black turmeric database: A database
of natural compounds from Curcuma caesia Roxb.
Asian Journal of Pharmaceutical and
Clinical Research, 11: 406-408.
Murashige,
T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with
tobacco tissue culture. Plant Physiology,
15: 473-497.
Naik, R.R., Stringer,
S.J., Agarwal, G., Jones, S.E.,
and Stone, M.O. (2002).
Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1: 169-172.
Nayak, S.,
and Naik, P.K. (2006). Factors effecting in
vitro microrhizome formation and growth in
Curcuma longa L. and improved
field performance of micropropagated plants. Science Asia, 32: 31-37.
Oyaizu, M.
(1986). Studies on products of browning reaction antioxidative activities of
products of browning reaction
prepared from glucosamine. The Japanese
Journal of Nutrition and Dietetics, 44: 307-315.
Ravindran,
P.N., Babu, K.N., and Sivaraman, K. (2007). Turmeric: The genus Curcuma. London, Chemical Rubber
Company press.
Salih, A.M., Qahtan, A.A., Al-Qurainy,
F., and Al-Munqedhi, B.M.
(2022). Impact of biogenic ag-containing nanoparticles on germination rate,
growth, physiological, biochemical parameters, and antioxidants system of
tomato (Solanum tuberosum L.) in vitro. Processes, 10:
825.
Sami, F.,
Yusuf, M., Faizan, M., Faraz, A., and Hayat, S. (2016). Role of sugars under
abiotic stress. Plant Physiology and Biochemistry, 109: 54-61.
Selvan, D.A., Mahendiran, D., Kumar,
R.S., and Rahiman, A.K.
(2018). Garlic, green tea and turmeric extracts-mediated green synthesis of
silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry
and Photobiology B: Biology, 180: 243-252.
Shameli, K., Ahmad, M.B., Jazayeri, S.D., Shabanzadeh,
P., Sangpour, P., Jahangirian, H., and
Gharayebi, Y. (2012).
Investigation of antibacterial properties silver nanoparticles prepared via
green method. Chemistry Central Journal, 6: 73.
Solanki, S.,
Lakshmi, G.B., Dhiman, T., Gupta, S., Solanki, P.R., Kapoor, R., and Varma, A.
(2023). Co-application of silver nanoparticles and symbiotic fungus Piriformospora indica improves secondary
metabolite production in
black rice. Journal of Fungi, 9: 260.
Stepanov,
A.L. (1997). Optical properties of metal nanoparticles synthesized in a polymer
by ion implantation: A review. Technical Physics, 49:
143-153.
Valentovic, P., Luxova, M., Kolarovic, L., and
Gasparikova, O. (2006).
Effect of osmotic
stress on compatible solutes content, membrane
stability and water relations in two maize cultivars. Plant Soil and Environment, 52: 184.
Zhang, W., and Jiang, W. (2020). Antioxidant and
antibacterial chitosan film with tea polyphenols-mediated green synthesis
silver nanoparticle via a novel one-pot method. International Journal
of Biological Macromolecules, 155: 1252-1261.