Author(s):
Shatabdi Ghose, Umamaheswari S, Susithra E, Rajasekhar Chekkara, Naresh Kandakatla, Uma Maheswara Reddy C
Email(s):
shagh08@gmail.com , esusithra@gmail.com , rajasekhar@gmail.com , sparkshabz@gmail.com
Address:
Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra University. Chennai
Department of Pharmacognosy, Faculty of Pharmacy, Sri Ramachandra University, Chennai
Department of Chemistry, Satyabama University, Jeppiar Nagar, Chennai, India.
Published In:
Volume - 29,
Issue - 1,
Year - 2016
DOI:
Not Available
ABSTRACT:
Secondary metabolites from natural sources play a crucial role in the treatment of various ailments in humans. Traditionally, Operculina turpethum has been used to treat gastrointestinal disturbances and asthma. Therapeutically, the plant has activity against tumor, tuberculosis, malaria, etc. In the present study, the scavenging capacity of the chloroform extract was studied as a prelude to the anti-neoplastic efficacy. The molecular simulation studies to identify the bioactive constituents in Operculina turpethum responsible for anticancer property were done. Further, the chloroform extract was assessed for its anti-oxidant potential. The eight naturally occurring molecules were identified by GC-MS analysis namely, 3-(4-hydroxy-phenyl)-N-[2-(4-hydroxyphenyl)-ethyl)-acrylamide: Stigma-5,22dien-3-0-b-D-glucopyranoside; Turpethinic acids A-E, and were docked against various cancer proteins namely, JNKI (PDB ID:4L7F), MMP-9 (PDB ID:4XCT). Caspase-3 (PDB ID 2XYG), PARP-1 (PDB ID:4UND), ERK2 (PDB ID:3C9W), AKTI (PDB ID:4EKL) and CDK6 (PDB ID:4TTH) using LigandFit module in Discovery Studio. The chloroform extract showed significant anti-oxidant property with IC value of 126.58ug/ml. From molecular docking studies, it was observed that all the docked compounds showed effective hydrogen bond interactions with the active amino acid residues present in the active domain of proteins like, INKI, MMP-9, Caspase-3, PARP-1, ERK2& CDK6. Furthermore the "Stigma-5, 22dien-3-0-b-D-glucopyranoside" docked compound shows good H-bond interactions and bond length with the active residues present in the active domain of PARP-1. ERK2 and AKTI. From the above study, it is inferred that the chloroform extract possessed significant anti-oxidant property and among the molecules docked, 3-(4-hydroxy-phenyl)-N-[2-(4-hydroxy phenyl)-ethyl]-acrylamide, Turpethinic acids C and Turpethinic acids E showed more interaction score and H-bond formation with all the docked cancer proteins. It can be concluded that a rational drug designing with the above targeted compounds might be useful in development of selective inhibitors for treatment of cancer.
Cite this article:
Ghose, S, E, Chekkara, Kandakatla and C (2016). Pharmacological Screening of the Bioactive Constituents of Operculina turpethum. Journal of Ravishankar University (Part-B: Science), 29(1), pp.101-102.