Abstract View

Author(s): Yogesh Kumar, Sweta Minj, Naman Shukla, Sanjay Tiwari

Email(s): naman.shukla43@gmail.com

Address: School of Studies in Electronics and Photonics, Pt. Ravishankar Shukla University, Raipur-492010, C.G., India

Published In:   Volume - 35,      Issue - 1,     Year - 2022

DOI: 10.52228/JRUB.2022-35-1-4  

ABSTRACT:
Research of lead-free Perovskite based solar cells has gained speedy and growing attention with urgent intent to eliminate toxic lead in Perovskite materials. The main purpose of this work is to supplement the research progress with comparative analysis of different lead-free Perovskite based solar cells by numerical simulation method using solar cell capacitance simulator (SCAPS-1D) software. The environmental friendliness and excellent thermal stability proves Cesium Tin Iodide (CsSnI3) as one of the promising materials for the commercialization of the Perovskite solar cells. However, CsSnI3 solar cells suffer from poor efficiency due to having low open-circuit voltage, VOC attributed to poor absorber film quality as well as energy level mismatch at the interfaces between different layers like transparent front contact. The architecture of the solar cell is n-i-p device structure acts as light CsSnI3 absorber active layer, TiO2 as electron transport layer and Spiro-OMeTAD as hole transport layer with device structure FTO/ TiO2/CsSnI3 / Spiro-OMeTAD /Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency Voc=1.09V, Jsc=28.85mA/cm2, FF=88.65%, eta=28.09%, V_MPP=0.99V, J_MPP=28.15 mA/cm2 respectively.

Cite this article:
Kumar, Minj, Shukla and Tiwari (2022). Design and Device Modeling of Lead Free CsSnI3 Perovskite Solar Cell. Journal of Ravishankar University (Part-B: Science), 35(1), pp. 25-34.DOI: https://doi.org/10.52228/JRUB.2022-35-1-4


Reference

Burgelman, M., Decock, K., Khelifi, S. and Abass, A. (2013). Advanced electrical simulation of thin film solar cells. Thin Solid Films. 535, 296-301.

Burgelman, M., Nollet, P. and Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films. 361-362, 527-532.

Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K. and Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319.

Calado, P., Telford, A.M., Bryant, D., Li, X., Nelson, J., O'Regan, B.C. and Barnes, P. R.F. (2016), Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis, Nat. Commun. 7, 13831.

Correa-Baena, J.-P. et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710-727 (2017).

Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739-744 (2017).

Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036-3103 (2019)

Jiang, X. et al. “Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design”, Nat. Common., Vol. 11, pp. 1245, 2020.

Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009)  

Krishna, B. G., Rathore, G. S., Shukla, N., and Tiwari, S. (2020). Perovskite solar cells: A review of architecture, processing methods, and future prospects, in:  Khan I., Khan A. (Eds.), Hybrid Perovskite Composite Materials Design to Applications. Woodhead Publishing, Elsevier, Duxford, pp. 375-412.

Kumar, M. H. et al. Lead‐free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122- 7127 (2014)

Martin A. Green et al., “Solar cell efficiency tables (version 56)”, Prog Photovoltaic Res Apply, vole. 28(7), pp629638, June 2020

Ning Wang et al., “Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI3 Thin Films”, Advance Energy Materials, vole. 6(24), pp. 813–820, December 2016.

National Renewable Energy Laboratory, Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf

Shi, D., Zeng, Y. and Shen, W. (2015). Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping. Sci Rep 5, 16504.

Shukla, N., Lal, D., and Tiwari, S. (2021). Investigation on Design and Device Modeling of High Performance CH3NH3PbI3-xClx Perovskite Solar Cells. Journal of Ravishankar University (Part-B: Science), 34(1), pp. 58-63.

Tan, Z.K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J. and Friend, R.H. (2014). Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 9(9):687-92.

Tiwari, S., Yakhmi, J.V., Carter, S. and Scott, J.C. (2018) Optimization of Bulk Heterojunction Organic Photovoltaic Devices. Handbook of Ecomaterials. Springer, Cham.

Yang, W.S, Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H. and Seok, S.I. (2017).

Iodide management in formamidinium-lead-halidebased perovskite layers for efficient solar cells. Science 356, 1376.

Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348, 1234.

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z., You, J., Liu, Y. and Yang, Y. (2014). Interface engineering of highly efficient provskite solar cells. Science, vol. 345, 542-546.

 

Related Images:



Recent Images



Optimized Structural Design of G+7 Residential Buildings: A Modern Approach with ETABS
Quantitative Estimation of Piperine in Drakshadi Ghrita by HPTLC Method
Screening of phenolics and flavonoids using FTIR and UV-Vis: Antioxidant activity and HPLC quantification of gallic acid and ellagic acid
Carbon Dots in Biomedical Applications: A Review of Their Interaction with Serum Albumins, Antidepressant Agents, and Enzymatic Systems
Review on Solar Energy in India, Achievements (2021–2025), and Benefits of Solar Energy
Investigation on Groundwater Quality in Sukma Bastar District, Chhattisgarh
Implement of Dijkstra method in Village data management system for Optimal Route Calculation
Fiber Reinforced Concrete: Comparative Analysis of Helix Steel Fibers and Plain Steel Fibers in Structural Applications
Dynamic Geometrical Modeling and Computational Analysis of Multi-Bob Pendulum Wave Interference Systems
A Comparative Analysis of Inventory Models: Evaluating the Economic Order Quantity (EOQ) Model with Constant Demand versus Variable Demand Rates

Tags


Recomonded Articles:

Author(s): B GopalKrishna; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-1         Access: Open Access Read More

Author(s): Yogesh Kumar Dongre* and Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-10         Access: Open Access Read More

Author(s): Madhu Allalla; Naman Shukla; Sweta Minj; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-5         Access: Open Access Read More

Author(s): Naman Shukla*; Dharamlal Prajapati; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-8         Access: Open Access Read More

Author(s): Yogesh Kumar; Sweta Minj; Naman Shukla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-4         Access: Open Access Read More

Author(s): Naman Shukla; K. Anil Kumar; Madhu Allalla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-2         Access: Open Access Read More

Author(s): Anil Kumar Verma

DOI: 10.52228/JRUB.2023-35-2-6         Access: Open Access Read More

Author(s): Shradha Devi Dwivedi; Madhu Yadav; Deependra Singh; Manju Rawat Singh

DOI: 10.52228/JRUB.2024-37-1-1         Access: Open Access Read More

Author(s): B P Nagori

DOI:         Access: Open Access Read More