Reference:
1. Hima, N. Lakhdar, A. Saadoune, Effect of electron transporting layer on power conversion efficiency of perovskite-based solar cell: comparative study, J. Nano. Electr. Phys. 11 (2019), 01026-1-3.
2. HIMA, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency, Superlattice Microstruct. 129 (2019) 240–246.
3. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2) 210th ECS Meeting 397, 2006, 397397. Cancun, Mexico, October Abstract.
4. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051.
5. A.M. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M.T. Weller, T. bein, J. Nelson, others, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chem. Mater. 27 (2015) 3397–3407.
6. CH3NH3GeI3 with high-absorption and mobility transport anisotropy: theoretical study, J. Mater. Chem. C 5 (2017) 5356–5364.
7. E. Dickinson, Solar Energy Technology Handbook, first ed., CRC Press, 2017.
8. E. Kabir, P. Kumar,S. Kumar,A.A. Adelodun,K.-H. Kim, Solar energy:potential and future prospects, Renew. Kemerchou, F. Rogti, B. Benhaoua, N. Lakhdar, A. Hima, O. Benhaoua, A. Khechekhouche, Processing temperature effect on optical and morphological parameters of organic perovskite CH3NH3PbI3 prepared using spray pyrolysis method, J. Nano. Electr. Phys. 11 (2019), 03011-1-4.
9. J. Feng et al., Adv. Mater., vol. 30, no. 35, pp. 1–9, 2018.
10. J. Gong, C. Li, M.R. Wasielewski, Advances in solar energy conversion, Chem. Soc. Rev. 48 (2019) 1862–1864.
11. K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, Y. Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation, Solid State Electron. 126 (2016) 75–80.
12. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer, J. Am. Chem. Soc. 137 (2015) 2674–2679.
13. M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, S. Degrave, SCAPS manual. https://users.elis.ugent.be/ELISgroups/solar/projects/scaps/SCAPS% 20manual%20most%20recent.pdf, 2016.
14. Mater. 28 (2016) 6478–6484.
15. National Renewable Energy Laboratory, Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell efficiencies.20190802.pdf.
16. P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH 3 NH 3 PbI3 and CH3NH3SnI3 perovskites for solar cell applications, Sci. Rep. 4 (2014) 4467.
17. Q.-Y. Chen, Y. Huang, P.-R. Huang, T. Ma, C. Cao, Y. He, Electronegativity explanation on the efficiencyenhancing mechanism of the hybrid inorganic–organic perovskite ABX3 from first-principles study, Chin. Phys. B 25 (2015), 027104.
18. Qiong Wang, Nga Phung, Diego Di Girolamo, Paola Vivo, Antonio Abate, Enhancement in lifespan of halide perovskite solar cells, Energy Environ. Sci. 12 (2019) 865–886.
19. Rui Wang, Muhammad Mujahid, Yu Duan, Zhao-Kui Wang, Jingjing Xue, Yang Yang, A review of perovskites solar cell stability, advanced functional materials. https://doi.org/10.1002/adfm.201808843, 2019.
20. S. Il Seok, M. Grätzel, and N. G. Park, Small, vol. 14, no. 20, pp. 1–17, 2018.Sustain. Energy Rev.82 (2018) 894–900.
21. Y.-Q. Zhao, B. Liu, Z.-L. Yu, J. Ma, Q. Wan, P.-b. He, M.-Q. Cai, Strong ferroelectric polarization of
22. Z. Zhu, Y. Bai, X. Liu, C.C. Chueh, S. Yang, A.K.Y. Jen, Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer, Adv.