Abstract View

Author(s): Yogyata Chawre, Lakshita Dewangan, Ankita Beena Kujur, Indrapal Karbhal, Rekha Nagwanshi, Vishal Jain, Manmohan L. Satnami

Email(s): manmohanchem@gmail.com

Address: School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
Department of Chemistry, Govt. Madhav P.G. Science College, Ujjain, Madhya Pradesh, India
University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
*Corresponding Author: manmohanchem@gmail.com

Published In:   Volume - 35,      Issue - 1,     Year - 2022

DOI: 10.52228/JRUB.2022-35-1-7  

Organic/inorganic nanohybrids and quantum dots have attracted widespread interest due to their favorable properties and promising applications. Great efforts have been made to design and fabricate versatile nanohybrids. Processing structure-properties-performance relationships are reviewed for compound quantum dots. In this review, various methods for synthesizing quantum dots as well as their resulting properties are discussed. This review focuses on the design, properties, sensing as well as energy applications of organic/inorganic nanohybrids as well as quantum dots. In this article, strategies for the fabrication, properties, functions, characterization techniques, various synthesis strategies and application of nanohybrids and quantum dots are briefly deliberated.

Cite this article:
Chawre, Dewangan, Kujur, Karbhal, Nagwanshi, Jain and Satnami (2022). Quantum Dots and Nanohybrids and their Various Applications: A Review. Journal of Ravishankar University (Part-B: Science), 35(1), pp. 53-86.DOI: https://doi.org/10.52228/JRUB.2022-35-1-7


1.    Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019). Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4: 1732–1748.

2.               Sheng, E., Lu, Y., Tan, Y., Xiao, Y., Li, Z. and Dai, Z.(2020). Ratiometric Fluorescent Quantum Dot-Based Biosensor for Chlorothalonil Detection via an Inner-Filter Effect. Anal. Chem.,  92: 4364−4370.

3.               Chung, S., Revia, R.A. and Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater.1904362: 1-26.

4.               Amani-Ghadim, A.R., Khodam, F. and Dorraji, M.S.S.(2019). ZnS quantum dots intercalated layered double hydroxide semiconductors for solar water splitting and organic pollutant degradation. J. Mater. Chem. A,7: 11408-11422.

5.               Yang, M-L., Zhang, N., Lu, K-Q. and Xu, Y.J.(2017). Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 33: 3161–3169.

6.               Lan, X.; Masala, S. and Sargent, E.H. (2014). Charge-extraction stratergies for colloidal quantum dots photopoltaics. Nature Mater., 13: 233-240.

7.               Zhang, R. and Chen, W.(2013). Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron., 55: 83-90.

8.               Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z. and Wei, G(2013). One pot green synthesis, characterizations and biosensor application of self-assembled reduced graphene oxide-gold nanoparticle hybrid membranes. J. Mater. Chem. B., 1:6525-6531.

9.               Korram, J., Dewangan, L., Nagwanshi,R., Karbhal, I., Ghosh, K.K. and Satnami, M.L.(2019). Carbon Quantum Dot-Gold Nanoparticle System as Probe for Inhibition and Reactivation of Acetylcholinesterase: Detection of Pesticide. New J. Chem., 43: 6874-6882.

10.            Korram, J., Dewangan, L., Karbhal, I., Nagwanshi, R., Vaishanav, S.K., Ghosh, K.K.and Satnami, M.L. (2020). CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv., 10:24190-24202.

11.            Rahman, M.M., Karim, M.R., Alam, M.M., Zaman, M.B., Alharthi, N.,  Alharbi, H. and Asiri, A.M.(2020). Facile and efficient 3-chlorophenol sensor development based on photolumenescent core-shell CdSe/ ZnS quantum dots. Sci. Rep.,10: 557-567.

12.            Xie, H., Fua, Y., Zhang, Q., Yan, K., Yang, R., Mao, K., Chu, P.K., Liu, L. and  Wu, X.(2019). Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Talanta, 196: 530–536.

13.            Fernado, K.A.S., Sahu, S.P., Liu, Y., Lewis, W.K., Guliants, E., Jafariyan, A., Wang, P., Bunker, C.E. and Sun, Y.P. (2015).Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Appl. Mater. Interfaces , 7: 8363– 8376.

14.            Yan, Y., Zhai, D., Liu, Y., Gong, J., Chen, J., Zan, P., Zeng, Z., Li, S., Huang, W. and Chen, P. (2020). Van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano., 14: 1185−1195.

15.            Liu, Z., Liu, M., Xue, C., Chang, Q., Wang, H., Li, Y., Song, Z. and Hu, S.(2019). Facile Synthesis of Carbon Dots@2D MoS2 Heterostructure with Enhanced Photocatalytic Properties. Inorg. Chem.58:5746–5752.

16.            Mahala, C., Sharma, M.D. and Basu, M.(2020). Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting. Inorg. Chem., 59: 6988–6999.

17.            Mahala, C., Sharma, M.D. and Basu, M.(2020). ZnO Nanosheets Decorated with Graphite-Like Carbon Nitride Quantum Dots as Photoanodes in Photoelectrochemical Water Splitting. Carbon quantum dots enhanced the activity. ACS Appl. Nano Mater., 3: 1999– 2007.

18.            Li, W., Wei, Z., Wang, B., Liu, Y., Song, H., Tang, Z., Yang, B. and Lu, S.(2020).Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalyst. Mater.Chem.Front., 4: 277-284.

19.            Mao, N. (2019). Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. ,9: 12383.


20.            Sun, B., Chen, Y., Tao., Li., Zhao, H., Zhou, G., Xia, Y., Wang, H. and Zhao, Y.(2019). Nanorods Array of SnO2 Quantum Dots Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Appl. Mater. Interfaces , 11:2071–2081.

21.            Amir, M.N.I., Halilu, A., Julkapli and N.M.,Ma’amor, A.(2019). Gold-graphene oxide nanohybrids: A review on their chemical catalysisJ IndEng Chem., 83: 1- 41.

22.            Zhao,N., Yan, L.,Zhao, X., Chen, X., Li, A.,Zheng, D., Zhou, X., Dai, X. and Xu, F.(2019). Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. J. Chem.Rev., 66: 1666-1762.

23.            Wang, D., Saleh, N.B., Sun, W., Park, C.M., Shen, C., Aich,N.,Peijnenburg,N.J.G.M., Zhang, W., Jin, Y. and Su, C.(2019).  Next-Generation Multifunctional Carbon−Metal Nanohybrids for Energy and Environmental Applications. Environ. Sci. Technol., 53:7265−7287.

24.            Mao, S., Wen, Z, Kim, H.,Lu, G., Hurley, P. and Chen, J.,(2012) . A General Approach to One-Pot Fabrication of Crumpled Graphene-Based Nanohybrids for Energy Applications. ACS Nano, 6:7505- 7513.

25.            Lua, L.M., Li, H-B.,Qub, F., Zhanga, X-B., Shena, G-L. and Yu, R-Q. (2011). In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosen. and  Bioelectron., 263500–3504.

26.            Zhou, Q., Lin, Y., Zhang, K., Meijin Li, M. and Tang, D. (2018). Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device.  Biosen. and     Bioelectron., 101: 146–152.

27.            Ithurria, S. and Dubertret, B. (2018).Quasi 2D colloidal CdSe platelets with thickness controlled at atomic levels. J.Am. Chem. Soc., 130: 16504-16505.

28.            Manna, L., Milliron, D., Meisel, A., Scher, E. and Alivisatos, A.P.(2003). Controlled growth of tetrapod-branched inorganic nanocrystals. Nat.Mater., 2: 382-385.

29.            Peng, X.G. (2003).Mechanism for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals. Adv. Mater., 15:459-463.

30.            Matagne, P., Leburton, J.P. Nalwa, H.S. and Bandyopadhyay, S. (2003). Quantum Dots and Nanowires. American Scientific Publishers Stevenson Ranch, California.

31.            Drbohlavova, J., Adam, V.and  Kizek, R.J. (2009). Quantum Dots — Characterization, Preparation and Usage in Biological Systems. Int. J. Mol. Sci., 10: 656-673.

32.            Dabbousi, B.O. et al. (1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallite. J.Phys. Chem. B., 101:9463-9475.

33.            Dhane, S., Resch-Genger, U. and  Wolfbeis, O.S.(1998). Near infrared dyes for high technology applications. Springer., 52: 141-158.1

34.            Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. and  Nann, T.(2008). Quantum dots versus organic dyes as fluorescent labels. Nat.Methods.,5: 763-775.

35.            Hawrylak, P.(1999). Excitonic artificial atoms: Engineering optical properties of quantum dots. Phys. Rev. B, 60: 5597-5608.

36.            Bera , D., Qian, L., Tseng, T-K., Holloway, P-H.(2010). Quantum Dots and Their Multimodal Applications: A Review. Materials, 3: 2260-2345.

37.            Algar, W.R., Susumu, K., Delehanty, J.B. and  Medintz, I. L.(2011). Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal. Chem., 83: 8826-8837.

38.            Frigerio, C., Ribeiro, D.S.M., Rodrigues, S.S.M., Abreu, V.L.R.G., Barbosa, J.A.C., Prior, J.A.V., Marques, K.L. and Santos, J.L.M. (2012). Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta 735: 9–22.

39.            Kulkarni, S.K., Winkler, U., Deshmukh, N., Borse, P.H., Fink, R. and Umbach, E.(2001). Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles. Appl. Surf. Sci., 169: 438–446.

40.            Wang, W.Z., Germanenko, I. and  El-Shall, M.S.(2002). Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem. Mater.,14: 3028–3033.

41.            Petrov, D.V., Santos, B.S., Pereira, G.A.L. and Donega, C.D. (2002). Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals. J. Phys. Chem. B, 106: 5325–5334.

42.            Bailey, R.E. and Nie, S.M.(2003). Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size J. Am. Chem. Soc., 125: 7100–7106.

43.            Zhong, X.H., Han, M.Y., Dong, Z.L., White, T.J.and  Knoll, W.(2003). Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc.,125: 8589–8594.

44.            Gurusinghe, N.P., Hewa-Kasakarage, N.N. and Zamkov, M. (2008). Composition-Tunable Properties of CdSxTe1-x Alloy Nanocrystals. J. Phys. Chem. C, 112:12795–12800.

45.            Korgel, B.A. and Monbouquette, H.G.(2000). Controlled Synthesis of Mixed Core and Layered (Zn,Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles. Langmuir, 16: 3588–3594.

46.            Lee, H., Holloway, P.H. and Yang, H. (2006). Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods .J. Chem. Phys., 125: 2363181–2363189.

47.            Pradhan, N., Goorskey, D., Thessing, J. and Peng, X.G.(2005). An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc.,127: 17586–17587.

48.            Zheng, Y.H.; Zhao, J.H.; Bi, J.F.; Wang, W.Z.; Ji, Y.; Wu, X. G. and Xia, J.B.(2007). Cr-doped InAs selforganized diluted magnetic quantum dots with room-temperature ferromagnetism. Chin. Phys. Lett.,24, 2118–2121.

49.            Bhargava, R.N. (1996). Doped nanocrystalline materials - Physics and applications. J. Lumin. 70: 85–94.

50.            Stowell, C.A., Wiacek, R.J., Saunders, A.E. and Korgel, B.A.(2003). Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals. Nano Lett., 3:1441–1447.

51.            Beaulac, R., Schneider, L.;,Archer, P.I., Bacher, G. and Gamelin, D.R.(2009). Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots .Science325: 973–976.

52.            Radovanovic, P.V. and Gamelin, D.R.(2001). Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots: Demonstration of an Isocrystalline Core/Shell Synthetic Method. J. Am. Chem. Soc., 123: 12207–12214.

53.            Bryan, J.D. and Gamelin, D.R.(2005). Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem., 54: 47–126.

54.            Erwin, S.C., Zu, L.J., Haftel, M.I., Efros, A.L., Kennedy, T.A. and Norris, D.J.(2005). Doping semiconductor nanocrystals. Nature ,436: 91–94.

55.            Norris, D.J., Efros, A.L. and  Erwin,S.C. (2008). Doped Nanocrystals .Science319: 1776–1779.

56.            Yang, Y.A., Chen, O., Angerhofer, A. and Cao, Y.C.(2006). Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. J. Am. Chem. Soc., 128: 12428–12429.

57.            Yang, H.S., Santra, S. and Holloway, P.H.(2005). Syntheses and Applications of Mn-Doped II-VI Semiconductor Nanocrystals. J. Nanosci. Nanotechnology, 5: 1364–1375.

58.            Fujii, M., Yamaguchi, Y., Takase, Y., Ninomiya, K. and Hayashi, S.(2005). Photoluminescence from impurity codoped and compensated Si nanocrystals .Appl. Phys. Lett., 87: 211919 1–3.

59.            Wang, Y., Herron, N.(1991). Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties.  J. Phys. Chem., 95: 525–532.

60.            Bang, J., Yang, H., Holloway and P.H.(2006). Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology, 17: 973–978.

61.            Kucur, E., Bucking, W., Giernoth, R. and Nann, T.(2005). Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry. J. Phys. Chem. B, 109:20355–20360.

62.            Colvin, V.L., Goldstein, A.N. and Alivisatos, A.P.(1992). Semiconductor Nanocrystals Covalently Bound to Metal Surfaces with Self-Assembled Monolayers. J. Am. Chem. Soc., 114: 5221–5230.

63.            Dabbousi, B.O., Murray, C.B., Rubner, M.F. and Bawendi, M.G. (1994). Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites. Chem. Mater., 6: 216–219.

64.            Murray, C.B., Kagan, C.R. and Bawendi, M.G. (1995). Self-organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices .Science, 270: 1335–1338.

65.            Chen, X.B., Lou, Y.B., Samia, A.C., Burda, C. (2003). Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures .Nano Lett. ,3: 799–803.

66.            Peng, X.G., Schlamp, M.C., Kadavanich, A.V. and Alivisatos, A.P.(1997). Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 119: 7019–7029.

67.            Yang, H.S.,Holloway, P.H.and Santra, S.(2004). Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. J. Chem. Phys., 121: 7421–7426.

68.            Empedocles, S.A., Bawendi, M.G. (1997). Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots .Science278: 2114-2117.

69.            Klimov, V.I.(2006). Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion. J. Phys. Chem. B, 110: 16827–16845.

70.            Xia, M., Luo, J., Chen, C., Liu, H., Tang, J.(2019). Semiconductor Quantum Dots- Embedded Inorganic glasses: Fabrication, Luminescent Properties, and Potential Applications.Adv. Optical Mater., 43: 1900851- 1900864.

71.            Reiss, P., Quemard, G., Carayon, S., Bleuse, J., Chandezon, F. and Pron, A.(2004). Luminescent ZnSe nanocrystals of high color purity. Mater. Chem. Phys,84: 10–13.

72.            Karanikolos, G.N., Alexandridis, P., Itskos, G., Petrou, A. and Mountziaris, T.J.(2004). Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles. Langmuir, 20: 550–553.

73.            Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., Steigerwald and M.L., Brus, L.E.(1990). Electronic Structure and Photoexcited-Carrier Dynamics in Nanometer-Size CdSe Clusters . Phys. Rev. Lett., 65: 1623–1626.

74.            Efros, A.L., Rosen, M. (1997). Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. Phys. Rev. Lett., 78: 1110–1113.

75.            Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A. and Nesbitt, D.J.(2000). Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J. Chem. Phys., 112: 3117–3120.

76.            Van Sark, W., Frederix, P., Van den Heuvel, D.J., Bol, A.A., van Lingen, J.N.J., Donega, C.D., Gerritsen, H.C. and Meijerink, A. (2002). Time-Resolved Fluorescence Spectroscopy Study on the Photophysical Behavior of Quantum Dots. J. Fluoresc., 12: 69–76.

77.            Stefani, F.D., Zhong, X.H., Knoll, W., Han, M.Y. and Kreiter, M. (2005). Memory in quantum dot photoluminescence blinking. New J. Phys.,7:197.

78.            Issac, A., von Borczyskowski, C., Cichos, F.(2005). Correlation between photoluminescence intermittencyof CdSe quantum dots and self -trapped states in dielectricmedia. Phys. Rev. B, 71: 161302.

79.            Yang, H., Holloway, P.H., Cunningham, G. and Schanze, K.S.(2004). CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. J. Chem. Phys., 121:10233–10240.

80.            Lee, J. D.(2005). Concise Inorganic Chemistry, 1032, Blackwell .

81.            Gfroerer, T.H. (2000). Photoluminescence in Analysis of Surfaces and Interfaces. 9209–9231. John Wiley & Sons Ltd.

82.            Spanhel, L.and Anderson, M.A.(1991).Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids.  J. Am. Chem. Soc., 113: 2826–2833.

83.            Williams, E.W.,Hall, R.(1997). Luminisence and the light emitting diode. Pergomon Press: New York, NY, USA..

84.            Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A. and Bawendi, M.G.(2000). Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science, 287: 1011–1013.

85.            Eaton, D.F. (1998). Reference Materials For Fluorescence Measurement Pure Appl. Chem., 60:1107–1114.

86.            Yang, H.S., Santra, S., Walter, G.A. and Holloway, P.H (2006).Gd(III)-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes.Adv. Mater.,18: 2890– 2894.

87.            Santra, S., Yang, H.S., Holloway, P.H., Stanley, J.T. and Mericle, R.A.(2005).Synthesis of Water-Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS:Mn/ZnS Quantum Dots: A Multifunctional Probe for Bioimaging J. Am. Chem. Soc., 127: 1656–1657.

88.            Yang, H. and Holloway, P.H.(2004). Efficient and Photostable ZnS passivated CdS: Mn Luminiscent Nanocrystals.   Adv. Func. Mater., 14: 152–156.

89.            Bera, D., Qian, L., Sabui, S., Santra, S. and Holloway, P.H.(2008). Photoluminescence of ZnO quantum dots produced by a sol–gel process. Opt. Mater., 30: 1233–1239.

90.            Qian, L., Bera, D.and Holloway, P.H.(2008). Temporal evolution of white light emission from CdSe Quantum Dots.  Nanotechnology, 19: 285702.

91.            Parak, W.J., Pellegrino, T. and Plank, C.(2005). Multivalent Conjugation of Peptides, Proteins, and DNA to Semiconductor Quantum Dots. Nanotechnology, 16: R19- R25.

92.            Algar, W.R., Prasuhn, D.E., Stewart, M.H., Jennings, T.L., Mlanco-canosa, J.B., Dawson, P.E. and Medintz, I.L.(2011). The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chem.,22: 825-858.

93.            Sapsford, K.E.,   Tyner, K.M.,   Dair, B.J., Deschamps, J.R.and Medintz,I.L. (2011). Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal.Chem., 83:4453-4488.

94.            Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B., Oh, E., Stewart, M.H. and Medintz, I.L.(2013). Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem.Rev., 113:1904-2074.

95.            Meditntz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi. (2005).Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.,4:435-446.

96.            Mattossi, H., Pauli, G. and Na, H.B. (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv.Drug Deliv. Rev.,64: 138-166.

97.            Dabbousi, B.O., Rodriguez Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi,H., Ober, R., Jensen, K.F. and Bawendi, M.G.(1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J.Phys.Chem.B.,101: 9463-9475.

98.            Jorge, P.A.S.,  Martins,          M.A., Trindade,T.,      Santos, J.L. and Farahi,            F. (2007). Optical Fiber Sensing Using Quantum Dots . Sensors.,7: 3489-3534.

99.            Liu,D. and Snee, P.T.(2011) . Water-Soluble Semiconductor Nanocrystals Cap Exchanged with Metalated Ligands. ACS Nano., 5: 546-550.

100.         Zhang, Y.J., Schnoes,A.M. and Clapp, A. R. (2010). Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl.Mater.Interfaces.,2: 3384-395.

101.         Zhou, D.J., Li,Y., Hall, E.A.H., Abell, C. and Klenerman,D.(2011). A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection. Nanoscale., 3: 201- 211.

102.         Joy, J., Mathew, J. and George, S.C.(2018). Nanomaterials for photoelectrochemical water splitting e review. Int. J. Hydrog. Energy., 43: 4804-4817.

103.         Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019). Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4: 1732-178.

104.         Li, X., Hao, X., Abudula, A. and Guan, G. (2016). Nanostructured catalysts for electrochemical water splitting : Current aspects and prospects. J. Mater. Chem. A., 43:1-28.

105.         Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S. and Kundu, S. (2016). Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal., 6: 8069-8097.

106.         Mao, N. and Jiang, J-X.(2019). MgO/g-C3N4 nanocomposites as efficient water splitting  photocatalysts under visible light irradiation. Appl. Surf. Sci.,476:144-150.

107.         Wu, F., Ye, Y.S., Huang, J.Q., Zhao, T., Qian, J., Zhao, Y.Y., Li, L., Wei, L., Luo, R., Huang, Y.X., Xing, Y.and  Chen, R.J.(2017). Sulfur Nano-Dots Stitched in 2D “Bubble-Like” Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium-Sulfur Batteries.  ACS Nano, 11: 4694-4702.

108.         . Kaur, M., Kaur, M. and Sharma, V.K.(2018). Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci., 259: 44-64.

109.         Scherer, A., Craighead, H.G. and Beebe, E.D. (1987). Gallium arsenide and aluminum gallium arsenide reactive ion etching in boron trichloride/argon mixtures. J. Vac. Sci. Technol. B5: 1599– 1605.

110.         Azharuddin, M., Zhu, G.H., Das, D., Ozgur, E., Uzun, L., Turner, A.P.F. and Patra, H.K.(2019). A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun., 55: 6964—6996.

111.         Chason, E., Picraux, S.T., Poate, J.M., Borland, J.O., Current, M.I., delaRubia, T.D., Eaglesham, D.J., Holland, O.W., Law, M.E., Magee, C.W., Mayer, J.W., Melngailis, J. and Tasch, A.F.(1997). Ion beams in silicon processing and characterization. J. Appl. Phys., 81: 6513–6561.

112.         Burda, C., Chen, X.B., Narayanan, R. and El-Sayed, M.A.(2005). Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 105: 1025–1102.

113.         Sashchiuk, A., Lifshitz, E., Reisfeld, R., Saraidarov, T., Zelner, M. and Willenz, A. (2002). Optical and Conductivity Properties of PbS Nanocrystals in Amorphous Zirconia Sol-Gel Films. Sol-Gel Sci. Technol., 24: 31–38.

114.         Yang, H., Holloway, P.H., Cunningham, G. and Schanze, K.S.(2004). CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. J. Chem. Phys.,121: 10233–10240.

115.         Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J. and Brus, L.E.(1990). Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media.  J. Am. Chem. Soc.,112: 1327–1332.

116.         Ogawa, S., Hu, K., Fan, F.R.F. and Bard, A.J.(1997). Photoelectrochemistry of Films of Quantum Size Lead Sulfide Particles Incorporated in Self-Assembled Monolayers on Gold. J. Phys. Chem. B , 101: 5707– 5711.

117.         Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E. and White, J.M.(1992) . Demonstration of a Shell-Core Structure in Layered CdSe-ZnSe Small Particles by X-ray Photoelectron and Auger Spectroscopies .J. Phys. Chem. ,96: 3812–3817.

118.         Murray, C.B., Norris, D.J. and Bawendi, M.G.(1993). J. Am. Chem. Soc.,115: 8706– 8715.

119.         Qu, L.H., Peng, Z.A. and Peng, X.G.(2001). Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett., 1: 333–337.

120.         Tsukamoto, S.,Bell, G.R. and Arakawa, Y.(2006). Heteroepitaxial growth of InAs on GaAs (0 0 1) by in situ STM located inside MBE growth chamber. Microelectron. J., 37: 1498– 1504.

121.         Jiao, Y.H., Wu, J., Xu, B., Jin, P., Hu, L.J., Liang, L.Y. and Wang, Z.G.(2006). MBE InAs quantum dots grown on metamorphic InGaAs for long wavelength emitting. Physica  E, 35:194–198.

122.         Lobo, C. and Leon, R.(1998). InGaAs island shapes and adatom migration behavior on (100), (110), (111), and (311) GaAs surfaces.  J. Appl. Phys., 83:4168–4172.

123.         Murray, C.B., Kagan, C.R. and Bawendi, M.G. (2000). Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies .Annu. Rev. Mater.Sci., 30:545-610.

124.         Mangolini, L., Thimsen, E. and Kortshagen, U.(2005). High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals .Nano. Lett., 5: 655-659.

125.         Kortshagen, U.(2009). Nonthermal plasma synthesis of semiconductor nanocrystals. J. Phys.D:Appl. Phys.,42: 113001-113023.

126.         Pi,D.X., Gresback, R., Liptak, R.W., Campbell, S.A. and Kortshagen, U.(2008). Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl. Phys.Lett., 92: 123102-123104.

127.         Lee, S.W., Mao,C., Flynn, C.E. and Belcher, A.M.(2002).Ordering of Quantum Dots Using Genetically Engineered Viruses . Science, 296:892-897.

128.         Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. and Belcher, A.M.(2000). Selection of peptides with semiconductor binding speciacity for directed nanocrystal assembly. Nature., 405:665-673.

129.         Jawaid, A.M., Chattopadhyay, S., Wink,D.J., Page, L.E. and Snee, P.T.(2013). Cluster-Seeded Synthesis of Doped CdSe:Cu4 Quantum Dots. ACS       Nano, 7:3190-3197.

130.         Trinadh, T., Khuntia, H., Anusha, T., Bhavani, K.S., Kumar,J.V.S. and Brahman,P.K.(2020). Synthesis and characterization of nanocomposite material based on graphene quantum dots and lanthanum doped zirconia nanoparticles: An electrochemical sensing application towards flutamide in urine samples. Diam. Relat. Mater.,110:108143-108177.

131.         Drbohlavova ,J.,Adam, V., Kizek, R. and Hubalek, J.(2009). Quantum Dots — Characterization, Preparation and Usage in Biological Systems . Int. J. Mol. Sci., 10: 656-673.

132.         Shamsa, K., Selvaraj, P., Rajaitha, M., Vinoth, S., Murugan, C., Rameshkumar, P. and Pandikuma,A.(2020). In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol. MicrochimActa , 187: 1-9.

133.         Li, G., Wu, J., Jin, H., Xia, Y., Liu, J., He, Q. and  Chen,D.(2020). Titania/Electro-Reduced Graphene Oxide Nanohybrid as an Efficient Electrochemical Sensor for the Determination of Allura Red. Nanomaterials, 10: ,1-9.

134.         Chen, W.Y., Jiang, X., Lai, S-N., Peroulis, D. and Stanciu, L.(2020). Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun.11: 1-10.

135.         Mai, L.N.T., Bui, Q.B., Bach, L.G., Nhac-Vu, H.-T. (2019). A novel nanohybrid of cobalt oxide-sulfide nanosheets deposited three-dimensional foam as efficient sensor for hydrogen peroxide detectionJ. Electroanal. Chem.45:1-33.

136.         Molaei, M.J. (2020). The optical properties and solar energy conversion applications of carbon quantum dots: A review. Sol Energy., 196:549-566.

137.         Ma, Y., Mei, H., Li, Y., Zhou, P., Mao, G., Wang, H. and Wang, X. (2022). A novel raiometric fluorescence probe based on silicon quantum dots and copper nanoclusters for visual assay of L-cysteine in milks. Food Chem., 379:132155-132161.

138.         Yao, T., Dong, G., Qian, S., Cui, Y., Chen, X., Tan, T. and Li, L. (2022). Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine. Sens. Actuators B Chem., 375:131470-131478.

139.         Li, H., Sun, X., Xue, F., Ou, N., Sun, B-W., Qian,D., Chen,M., Wang, D., Yang, J. and Wang, X.(2018). Redox induced fluorescence on-off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging ACS Sustain. Chem. Eng., 6:1708-1716.

140.         Singh, J., Kaur, S., Lee, J., Mehta, A., Kumar, S., Kime, K-H., Basu, S. and  Rawat , M.(2020). High fluorescent carbon dots derived from Magnifera indica  leaves for selective detection of metal ions. Sci. Total Environ. , 137604: 1-8.

141.         Sahub, C., Tuntulani, T., Nhujak, T. and Tomapatanaget, B. (2018). Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens. Actuators B Chem.258 : 88–97.

142.         Ensafi, A.A., Nasr-Esfahani, P. and Rezaei , B.(2017). Quenching-recovery for fluorescent biosensor for DNA detection based on mercaptopropionic acid-capped cadium telluride quantum dots aggregation. Sens. Actuators B Chem., 56:1- 36

143.         Carvalho, I.C., Mansur, A.A.P., Carvalho, S.M., Florentino, R.M. and Mansur, H.S.(2019). L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells. Int. J. Biol., 133: 739–753.

144.         Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sunb, H. and Yang, B. (2011). Strongly green-photofluorescent graphene quantum dots for bioimaging applications. Chem. Commun., 47: 6858–6860.

145.         Manivannan, K., Cheng, C.C., Anbazhagan, R.K., Tsai, H.C. and Chen, J.K.(2018). Fabrication of silver seeds and nanoparticle on core-shell Ag@SiO2 nanohybrids for combined photothermal therapy and bioimaging. J. Colloid Interface Sci.33:1-32.

146.         Zhang, P. and Liu, W.(2010). ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials31: 3087–3094.

147.         Zhao, C., Bai, Z., Liu, X., Zhang, Y.; Zouc, B. and Zhong, H. (2016). Small GSH—Capped CuInS2 Quantum Dots : MPA-Assisted Aqueous Phase Transfer and Bioimaging applications. ACS Appl. Mater. Interfaces7: 17623-17629.

148.         Yu, K., Peter Ng, P., Ouyang, J., Zaman, M.B., Abulrob, A., Baral, T.N., Fatehi, D., Jakubek, Z.J., Kingston,D., Wu, X., Liu, X., Hebert, C., Leek, D.M. and Whitfield, D.M. (2013). Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Appl. Mater. Interfaces45:1-11.

149.         Shivaj, K., Mani, S., Ponmurugan, P., Castro, C.S.D., Davies, M.L., Balasubramanian, M.G.and Pitchaimuthu, S.(2018). Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Appl. Nano Mater., 1: 1683−1693.

150.         Kaur, R., Rana, A Singh, R.K., Varun, A., Chhabra, Kim, K-H. and Akashdeep.(2017). Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv., 7: 29015–29024.

151.         Shi,J., Li, F., Yuan, J., Ling, X., Zhou, S., Qian, Y. and Ma, W.(2019). Efficient and stable CsPbI3 pervoskite  quantum dots enabled by insitu ytterbium doping for photovoltaic applications. J.Mater. Chem A7:20936-20944.

152.         Zhou, S., Liu, Z., Wang, Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F., Yuan, J. and Ma,W.(2018).Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications.  J. Mater. Chem. C, 7: 1575-1583.

153.         Chistyakov, A. A., Zvaigzne, M.A., Nikitenko, V. R. , Tameev, A. R. , Martynov, I. L. and Prezhdo, O. V.(2017). Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications. J. Phys. Chem. Lett., 8: 4129−4139.

154.         Oregan, B. and Gratzel, M. A.(1991). A low cost, High-efficiency Solar Cell based on Dye-Sensitized colloidal TiO2 films. Nature, 353: 737–740.

155.         Gratzel, M.(2001). Photoelectrochemical cells. Nature , 414: 338–344.

156.         Vogel, R., Hoyer, P. and Weller, H.(1994). Quantum sized PbS, CdS,Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem., 98: 3183–3188.

157.         Anjum , M., Oves,      M., Kumar, R. and Barakat, M.A (2016). Fabrication of ZnO-ZnS @ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater. Int.            Biodeterior. Biodegradation, 119:66-77.

158.         Yousafa,S., Kousara , T., Taja , M.B., Agboolab , P.O., Shakirc , I. and Warsi, M.F.(2019). Synthesis and characterization of double heterojunction-graphene nanohybrids for photocatalytic application. Ceram. Int., 45 : 17806–17817.

159.         Zia, J., Aazam, E.S. and Riaz, U. (2020). Highly efficient visible light driven photocatalytic activity of MnO2 and Polythiophene/MnO2 nanohybrids against mixed organic pollutants.  J. Mol. Struct., 1207: 127790-122782.

160.         Guo, R., Wang, Y., Li, J., Cheng, X. and Dionysiou, D.D.(2020). Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide. Appl. Catal. B: Environmental, 278:119297-119349.

161.         Zhao, Y., Liang, X., Shi, H., Wang, Y., Ren, Y., Liu, E., Zhang, X., Fan, J. and  Hu, X.(2018). Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment. Chem.Eng.Sci., 353:56-68.

162.         Santhosh, C., Malathi, A., Daneshvar, E., Kollu, P. and Bhatnagar, A.(2018). Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci. Rep.8:15531.

163.         Jacob, J.M., Rajan, R., Aji, M., Kurup, G.G., Pugazhendhi, A.(2019). Bio-inspired Zns quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase. Ceram. Int.45:4857-4862.

164.         Zhang, M., Yi Zhang, Y., Tang, L., Zeng, G., Wang, J., Zhu, Y., Feng, C., Deng, D. and He, W.(2019). Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation J. Colloid Interface Sci., 539:654–664.

165.         Jianga, R., Wua, D., Lua,G., Yana, Z., Liua, J., Zhoua, R. and Nkoom, M.(2019). Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. J. Taiwan Inst ChemEng., 96:681–690.

166.         Dewangan, L., Korram, J., Karbhal, I., Nagwanshi, R., Jena, V.K. and Satnami, M.L.(2019). A colorimetric nanoprobe based on enzymeimmobilized silver nanoparticles for the efficient detection of cholesterol. RSC Adv.9: 42085-42095.

167.         Satnami, M.L., Korram, J., Nagwanshi, R., Vaishanav, S.K., Karbhal, I., Dewangan, H.K. and Ghosh, K.K. (2018). : Gold Nanoprobe for Inhibition and Reactivation of Acetylcholinesterase: An Application to Detection of Organophosphorus Pesticides. Sens. Actuators B: Chem., 267: 155-164.

168.         Vaishanav, S. K., Korram, J., Pradhan, P., Chandraker, K., Nagwanshi, R., Ghosh, K.K. and Satnami, M.L.(2017). Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III. ). J. fluorescence, 27: 781-789.

169.         Vaishanav, S. K., Korram, J., Nagwanshi, R., Ghosh, K.K. and Satnami, M.L.(2017). : Mn2+ Doped-CdTe/ZnS Modified Fluorescence Nanosensor for Detection of Glucose. Sens Actuators B: Chem., 245: 196-204.

170.         Favaro, M., Cattelan, M., Price, S.W.T., Russell, A.E., Laura Calvillo, L., Stefano Agnoli, S. and Granozzi, G. (2020). In situ study of graphene oxide quantum dot-MoSx 3 nanohybrids as hydrogen evolution catalysts. Surfaces, 3: 225–236.

171.         Feng, X., Han, G., Cai, J. and Wang, X. (2022). Au@ Carbon Quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitite. J. Colloid Interface Sci., 607:1313-1322.

172.         Pondprom, A., Chansud, N. and Bunkoed, O. (2022). A fluorescence sensor probe based on porous carbon, molecularly imprinted polymer and graphene quantum dots for the detection of trace sulfadimethoxine. J. Photochem.Photobio. A.427: 113812.

173.         Huang, Z., Ceron, M.L., Feng, K., Wang, D., Camarada, M.B. and Liao, X. (2022). Anchoring black phosphorus quantum dots over carboxylated multiwalled carbon nanotubes : A stable 0D/1D nanohybrid with high sensing performance to Ochratoxin a. Appl. Surf. Sci., 583: 152429-152436.

174.         Chen, F., Gao, W., Qiu, X., Zhang, H., Liu, L., Liao, P., Fu, W and Luo,Y. (2018). Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine1: 192-199.

175.         Kumar, A., Singh, K.R.B., Ghate, M.D., Lalhlenmawia, H., Kumar, D. and Singh, J. (2022). Bioinspired quantum dots for cancer therapy. Mater. Lett., 313:131742-131766.

176. Chen, L., Chen, C-W., Huang, C-P., Chuang, Y., Nguyen, T-B. and Dong, C-D. (2022). A visible light-sensitive MoSSe    nanohybrid for the photocatalytic degradation of tetracycline, oxytetracycline and chlortetracycline. J. Colloid InterfaceSci., 616:67-68.

177. Zedan, M., Zedan, A.F., Amin, R.H. and Li, X. (2022). Visible-light active metal nanoparticles@carbon nitride for enchanced removal of water organic pollutants. J. Environ.Chem.Eng.,10:107780.

Related Images:

Recent Images

Herbal Alternatives for Oral Health:  Mechanistic Exploration with their Market Potential
A Review on Extraction, Identification and Application of Pesticidal Active Phytoderived Metabolites
Determination of Total Dissolved Solids (TDS) of RO Purified Drinking Water Samples in Raipur
Time of the Day Variability in Pit-Building Behavior of Antlion Larvae
A Comprehensive Review of a particular Skin Injury: Pathogenesis, triggers, and current Treatment Options
Enhanced antioxidant activity in Curcuma caesia Roxb. microrhizomes treated with silver nanoparticles
Studies on the Interaction of Imidazolium Ionic Liquids with Human Serum Albumin
Basic and Advanced Logical Concept Derived from Surface Enhanced Infrared Spectroscopy (SEIRS) as Sensing Probe for Analysis of Chemical Species: A Brief Review
Soil Erosion Risk Estimation by using Semi Empirical RUSLE model: A case study of Maniyari Basin, Chhattisgarh
An Estimator of Population Variance Using Multi-Auxiliary Information


Recomonded Articles:

Author(s): Swati Jain; Somesh Kumar Dewangan

DOI: 10.52228/JRUB.2021-34-1-9         Access: Open Access Read More

Author(s): B GopalKrishna; Sanjay Tiwari

DOI: 10.52228/JRUB.2021-34-1-1         Access: Open Access Read More

Author(s): Anil Kumar Verma*; Swati Sahu; Mohan Patel; Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-5         Access: Open Access Read More

Author(s): Yogesh Kumar Dongre* and Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-10         Access: Open Access Read More

Author(s): Madhu Allalla; Naman Shukla; Sweta Minj; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-5         Access: Open Access Read More

Author(s): Naman Shukla; K. Anil Kumar; Madhu Allalla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-2         Access: Open Access Read More

Author(s): Nikita Verma; Swarnlata Saraf

DOI:         Access: Open Access Read More

Author(s): Rupal Purena; Renu Bhatt

DOI:         Access: Open Access Read More

Author(s): B S Ajitkumar; Prashant S Hande; Vikas Jha; Pratiksha Alagh; Shailendra Rane

DOI:         Access: Open Access Read More

Author(s): Deepti Tikariha; Jyotsna Lakra; Srishti Dutta Roy; Toshikee Yadav; Kallol KGhosh

DOI:         Access: Open Access Read More

Author(s): Thiyagarajan Sivaprakasam; Sandeep Ravi Varma; Ilavarasu Arumugam; Sunil Prabhu; Rangesh P

DOI:         Access: Open Access Read More

Author(s): Shiv Shankar Shukla; Ravindra Pandey; Swarnalata Saraf; Shailendra Saraf

DOI:         Access: Open Access Read More