References:
1. Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019). Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4: 1732–1748.
2. Sheng, E., Lu, Y., Tan, Y., Xiao, Y., Li, Z. and Dai, Z.(2020). Ratiometric Fluorescent Quantum Dot-Based Biosensor for Chlorothalonil Detection via an Inner-Filter Effect. Anal. Chem., 92: 4364−4370.
3. Chung, S., Revia, R.A. and Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater., 1904362: 1-26.
4. Amani-Ghadim, A.R., Khodam, F. and Dorraji, M.S.S.(2019). ZnS quantum dots intercalated layered double hydroxide semiconductors for solar water splitting and organic pollutant degradation. J. Mater. Chem. A,7: 11408-11422.
5. Yang, M-L., Zhang, N., Lu, K-Q. and Xu, Y.J.(2017). Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 33: 3161–3169.
6. Lan, X.; Masala, S. and Sargent, E.H. (2014). Charge-extraction stratergies for colloidal quantum dots photopoltaics. Nature Mater., 13: 233-240.
7. Zhang, R. and Chen, W.(2013). Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron., 55: 83-90.
8. Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z. and Wei, G(2013). One pot green synthesis, characterizations and biosensor application of self-assembled reduced graphene oxide-gold nanoparticle hybrid membranes. J. Mater. Chem. B., 1:6525-6531.
9. Korram, J., Dewangan, L., Nagwanshi,R., Karbhal, I., Ghosh, K.K. and Satnami, M.L.(2019). Carbon Quantum Dot-Gold Nanoparticle System as Probe for Inhibition and Reactivation of Acetylcholinesterase: Detection of Pesticide. New J. Chem., 43: 6874-6882.
10. Korram, J., Dewangan, L., Karbhal, I., Nagwanshi, R., Vaishanav, S.K., Ghosh, K.K.and Satnami, M.L. (2020). CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv., 10:24190-24202.
11. Rahman, M.M., Karim, M.R., Alam, M.M., Zaman, M.B., Alharthi, N., Alharbi, H. and Asiri, A.M.(2020). Facile and efficient 3-chlorophenol sensor development based on photolumenescent core-shell CdSe/ ZnS quantum dots. Sci. Rep.,10: 557-567.
12. Xie, H., Fua, Y., Zhang, Q., Yan, K., Yang, R., Mao, K., Chu, P.K., Liu, L. and Wu, X.(2019). Selective and high-sensitive label-free detection of ascorbic acid by carbon nitride quantum dots with intense fluorescence from lone pair states. Talanta, 196: 530–536.
13. Fernado, K.A.S., Sahu, S.P., Liu, Y., Lewis, W.K., Guliants, E., Jafariyan, A., Wang, P., Bunker, C.E. and Sun, Y.P. (2015).Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Appl. Mater. Interfaces , 7: 8363– 8376.
14. Yan, Y., Zhai, D., Liu, Y., Gong, J., Chen, J., Zan, P., Zeng, Z., Li, S., Huang, W. and Chen, P. (2020). Van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano., 14: 1185−1195.
15. Liu, Z., Liu, M., Xue, C., Chang, Q., Wang, H., Li, Y., Song, Z. and Hu, S.(2019). Facile Synthesis of Carbon Dots@2D MoS2 Heterostructure with Enhanced Photocatalytic Properties. Inorg. Chem., 58:5746–5752.
16. Mahala, C., Sharma, M.D. and Basu, M.(2020). Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting. Inorg. Chem., 59: 6988–6999.
17. Mahala, C., Sharma, M.D. and Basu, M.(2020). ZnO Nanosheets Decorated with Graphite-Like Carbon Nitride Quantum Dots as Photoanodes in Photoelectrochemical Water Splitting. Carbon quantum dots enhanced the activity. ACS Appl. Nano Mater., 3: 1999– 2007.
18. Li, W., Wei, Z., Wang, B., Liu, Y., Song, H., Tang, Z., Yang, B. and Lu, S.(2020).Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalyst. Mater.Chem.Front., 4: 277-284.
19. Mao, N. (2019). Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. ,9: 12383.
20. Sun, B., Chen, Y., Tao., Li., Zhao, H., Zhou, G., Xia, Y., Wang, H. and Zhao, Y.(2019). Nanorods Array of SnO2 Quantum Dots Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Appl. Mater. Interfaces , 11:2071–2081.
21. Amir, M.N.I., Halilu, A., Julkapli and N.M.,Ma’amor, A.(2019). Gold-graphene oxide nanohybrids: A review on their chemical catalysis. J IndEng Chem., 83: 1- 41.
22. Zhao,N., Yan, L.,Zhao, X., Chen, X., Li, A.,Zheng, D., Zhou, X., Dai, X. and Xu, F.(2019). Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. J. Chem.Rev., 66: 1666-1762.
23. Wang, D., Saleh, N.B., Sun, W., Park, C.M., Shen, C., Aich,N.,Peijnenburg,N.J.G.M., Zhang, W., Jin, Y. and Su, C.(2019). Next-Generation Multifunctional Carbon−Metal Nanohybrids for Energy and Environmental Applications. Environ. Sci. Technol., 53:7265−7287.
24. Mao, S., Wen, Z, Kim, H.,Lu, G., Hurley, P. and Chen, J.,(2012) . A General Approach to One-Pot Fabrication of Crumpled Graphene-Based Nanohybrids for Energy Applications. ACS Nano, 6:7505- 7513.
25. Lua, L.M., Li, H-B.,Qub, F., Zhanga, X-B., Shena, G-L. and Yu, R-Q. (2011). In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosen. and Bioelectron., 26: 3500–3504.
26. Zhou, Q., Lin, Y., Zhang, K., Meijin Li, M. and Tang, D. (2018). Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosen. and Bioelectron., 101: 146–152.
27. Ithurria, S. and Dubertret, B. (2018).Quasi 2D colloidal CdSe platelets with thickness controlled at atomic levels. J.Am. Chem. Soc., 130: 16504-16505.
28. Manna, L., Milliron, D., Meisel, A., Scher, E. and Alivisatos, A.P.(2003). Controlled growth of tetrapod-branched inorganic nanocrystals. Nat.Mater., 2: 382-385.
29. Peng, X.G. (2003).Mechanism for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals. Adv. Mater., 15:459-463.
30. Matagne, P., Leburton, J.P. Nalwa, H.S. and Bandyopadhyay, S. (2003). Quantum Dots and Nanowires. American Scientific Publishers Stevenson Ranch, California.
31. Drbohlavova, J., Adam, V.and Kizek, R.J. (2009). Quantum Dots — Characterization, Preparation and Usage in Biological Systems. Int. J. Mol. Sci., 10: 656-673.
32. Dabbousi, B.O. et al. (1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallite. J.Phys. Chem. B., 101:9463-9475.
33. Dhane, S., Resch-Genger, U. and Wolfbeis, O.S.(1998). Near infrared dyes for high technology applications. Springer., 52: 141-158.1
34. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. and Nann, T.(2008). Quantum dots versus organic dyes as fluorescent labels. Nat.Methods.,5: 763-775.
35. Hawrylak, P.(1999). Excitonic artificial atoms: Engineering optical properties of quantum dots. Phys. Rev. B, 60: 5597-5608.
36. Bera , D., Qian, L., Tseng, T-K., Holloway, P-H.(2010). Quantum Dots and Their Multimodal Applications: A Review. Materials, 3: 2260-2345.
37. Algar, W.R., Susumu, K., Delehanty, J.B. and Medintz, I. L.(2011). Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal. Chem., 83: 8826-8837.
38. Frigerio, C., Ribeiro, D.S.M., Rodrigues, S.S.M., Abreu, V.L.R.G., Barbosa, J.A.C., Prior, J.A.V., Marques, K.L. and Santos, J.L.M. (2012). Application of quantum dots as analytical tools in automated chemical analysis: A review. Anal. Chim. Acta , 735: 9–22.
39. Kulkarni, S.K., Winkler, U., Deshmukh, N., Borse, P.H., Fink, R. and Umbach, E.(2001). Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles. Appl. Surf. Sci., 169: 438–446.
40. Wang, W.Z., Germanenko, I. and El-Shall, M.S.(2002). Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem. Mater.,14: 3028–3033.
41. Petrov, D.V., Santos, B.S., Pereira, G.A.L. and Donega, C.D. (2002). Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals. J. Phys. Chem. B, 106: 5325–5334.
42. Bailey, R.E. and Nie, S.M.(2003). Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc., 125: 7100–7106.
43. Zhong, X.H., Han, M.Y., Dong, Z.L., White, T.J.and Knoll, W.(2003). Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc.,125: 8589–8594.
44. Gurusinghe, N.P., Hewa-Kasakarage, N.N. and Zamkov, M. (2008). Composition-Tunable Properties of CdSxTe1-x Alloy Nanocrystals. J. Phys. Chem. C, 112:12795–12800.
45. Korgel, B.A. and Monbouquette, H.G.(2000). Controlled Synthesis of Mixed Core and Layered (Zn,Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles. Langmuir, 16: 3588–3594.
46. Lee, H., Holloway, P.H. and Yang, H. (2006). Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods .J. Chem. Phys., 125: 2363181–2363189.
47. Pradhan, N., Goorskey, D., Thessing, J. and Peng, X.G.(2005). An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc.,127: 17586–17587.
48. Zheng, Y.H.; Zhao, J.H.; Bi, J.F.; Wang, W.Z.; Ji, Y.; Wu, X. G. and Xia, J.B.(2007). Cr-doped InAs selforganized diluted magnetic quantum dots with room-temperature ferromagnetism. Chin. Phys. Lett.,24, 2118–2121.
49. Bhargava, R.N. (1996). Doped nanocrystalline materials - Physics and applications. J. Lumin. , 70: 85–94.
50. Stowell, C.A., Wiacek, R.J., Saunders, A.E. and Korgel, B.A.(2003). Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals. Nano Lett., 3:1441–1447.
51. Beaulac, R., Schneider, L.;,Archer, P.I., Bacher, G. and Gamelin, D.R.(2009). Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots .Science, 325: 973–976.
52. Radovanovic, P.V. and Gamelin, D.R.(2001). Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots: Demonstration of an Isocrystalline Core/Shell Synthetic Method. J. Am. Chem. Soc., 123: 12207–12214.
53. Bryan, J.D. and Gamelin, D.R.(2005). Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications. Prog. Inorg. Chem., 54: 47–126.
54. Erwin, S.C., Zu, L.J., Haftel, M.I., Efros, A.L., Kennedy, T.A. and Norris, D.J.(2005). Doping semiconductor nanocrystals. Nature ,436: 91–94.
55. Norris, D.J., Efros, A.L. and Erwin,S.C. (2008). Doped Nanocrystals .Science, 319: 1776–1779.
56. Yang, Y.A., Chen, O., Angerhofer, A. and Cao, Y.C.(2006). Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. J. Am. Chem. Soc., 128: 12428–12429.
57. Yang, H.S., Santra, S. and Holloway, P.H.(2005). Syntheses and Applications of Mn-Doped II-VI Semiconductor Nanocrystals. J. Nanosci. Nanotechnology, 5: 1364–1375.
58. Fujii, M., Yamaguchi, Y., Takase, Y., Ninomiya, K. and Hayashi, S.(2005). Photoluminescence from impurity codoped and compensated Si nanocrystals .Appl. Phys. Lett., 87: 211919 1–3.
59. Wang, Y., Herron, N.(1991). Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem., 95: 525–532.
60. Bang, J., Yang, H., Holloway and P.H.(2006). Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology, 17: 973–978.
61. Kucur, E., Bucking, W., Giernoth, R. and Nann, T.(2005). Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry. J. Phys. Chem. B, 109:20355–20360.
62. Colvin, V.L., Goldstein, A.N. and Alivisatos, A.P.(1992). Semiconductor Nanocrystals Covalently Bound to Metal Surfaces with Self-Assembled Monolayers. J. Am. Chem. Soc., 114: 5221–5230.
63. Dabbousi, B.O., Murray, C.B., Rubner, M.F. and Bawendi, M.G. (1994). Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites. Chem. Mater., 6: 216–219.
64. Murray, C.B., Kagan, C.R. and Bawendi, M.G. (1995). Self-organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices .Science, 270: 1335–1338.
65. Chen, X.B., Lou, Y.B., Samia, A.C., Burda, C. (2003). Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures .Nano Lett. ,3: 799–803.
66. Peng, X.G., Schlamp, M.C., Kadavanich, A.V. and Alivisatos, A.P.(1997). Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. , 119: 7019–7029.
67. Yang, H.S.,Holloway, P.H.and Santra, S.(2004). Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. J. Chem. Phys., 121: 7421–7426.
68. Empedocles, S.A., Bawendi, M.G. (1997). Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots .Science, 278: 2114-2117.
69. Klimov, V.I.(2006). Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion. J. Phys. Chem. B, 110: 16827–16845.
70. Xia, M., Luo, J., Chen, C., Liu, H., Tang, J.(2019). Semiconductor Quantum Dots- Embedded Inorganic glasses: Fabrication, Luminescent Properties, and Potential Applications.Adv. Optical Mater., 43: 1900851- 1900864.
71. Reiss, P., Quemard, G., Carayon, S., Bleuse, J., Chandezon, F. and Pron, A.(2004). Luminescent ZnSe nanocrystals of high color purity. Mater. Chem. Phys,84: 10–13.
72. Karanikolos, G.N., Alexandridis, P., Itskos, G., Petrou, A. and Mountziaris, T.J.(2004). Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles. Langmuir, 20: 550–553.
73. Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., Steigerwald and M.L., Brus, L.E.(1990). Electronic Structure and Photoexcited-Carrier Dynamics in Nanometer-Size CdSe Clusters . Phys. Rev. Lett., 65: 1623–1626.
74. Efros, A.L., Rosen, M. (1997). Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. Phys. Rev. Lett., 78: 1110–1113.
75. Kuno, M., Fromm, D.P., Hamann, H.F., Gallagher, A. and Nesbitt, D.J.(2000). Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J. Chem. Phys., 112: 3117–3120.
76. Van Sark, W., Frederix, P., Van den Heuvel, D.J., Bol, A.A., van Lingen, J.N.J., Donega, C.D., Gerritsen, H.C. and Meijerink, A. (2002). Time-Resolved Fluorescence Spectroscopy Study on the Photophysical Behavior of Quantum Dots. J. Fluoresc., 12: 69–76.
77. Stefani, F.D., Zhong, X.H., Knoll, W., Han, M.Y. and Kreiter, M. (2005). Memory in quantum dot photoluminescence blinking. New J. Phys.,7:197.
78. Issac, A., von Borczyskowski, C., Cichos, F.(2005). Correlation between photoluminescence intermittencyof CdSe quantum dots and self -trapped states in dielectricmedia. Phys. Rev. B, 71: 161302.
79. Yang, H., Holloway, P.H., Cunningham, G. and Schanze, K.S.(2004). CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. J. Chem. Phys., 121:10233–10240.
80. Lee, J. D.(2005). Concise Inorganic Chemistry, 1032, Blackwell .
81. Gfroerer, T.H. (2000). Photoluminescence in Analysis of Surfaces and Interfaces. 9209–9231. John Wiley & Sons Ltd.
82. Spanhel, L.and Anderson, M.A.(1991).Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc., 113: 2826–2833.
83. Williams, E.W.,Hall, R.(1997). Luminisence and the light emitting diode. Pergomon Press: New York, NY, USA..
84. Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A. and Bawendi, M.G.(2000). Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science, 287: 1011–1013.
85. Eaton, D.F. (1998). Reference Materials For Fluorescence Measurement Pure Appl. Chem., 60:1107–1114.
86. Yang, H.S., Santra, S., Walter, G.A. and Holloway, P.H (2006).Gd(III)-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes.Adv. Mater.,18: 2890– 2894.
87. Santra, S., Yang, H.S., Holloway, P.H., Stanley, J.T. and Mericle, R.A.(2005).Synthesis of Water-Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS:Mn/ZnS Quantum Dots: A Multifunctional Probe for Bioimaging. J. Am. Chem. Soc., 127: 1656–1657.
88. Yang, H. and Holloway, P.H.(2004). Efficient and Photostable ZnS passivated CdS: Mn Luminiscent Nanocrystals. Adv. Func. Mater., 14: 152–156.
89. Bera, D., Qian, L., Sabui, S., Santra, S. and Holloway, P.H.(2008). Photoluminescence of ZnO quantum dots produced by a sol–gel process. Opt. Mater., 30: 1233–1239.
90. Qian, L., Bera, D.and Holloway, P.H.(2008). Temporal evolution of white light emission from CdSe Quantum Dots. Nanotechnology, 19: 285702.
91. Parak, W.J., Pellegrino, T. and Plank, C.(2005). Multivalent Conjugation of Peptides, Proteins, and DNA to Semiconductor Quantum Dots. Nanotechnology, 16: R19- R25.
92. Algar, W.R., Prasuhn, D.E., Stewart, M.H., Jennings, T.L., Mlanco-canosa, J.B., Dawson, P.E. and Medintz, I.L.(2011). The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chem.,22: 825-858.
93. Sapsford, K.E., Tyner, K.M., Dair, B.J., Deschamps, J.R.and Medintz,I.L. (2011). Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal.Chem., 83:4453-4488.
94. Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B., Oh, E., Stewart, M.H. and Medintz, I.L.(2013). Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem.Rev., 113:1904-2074.
95. Meditntz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi. (2005).Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.,4:435-446.
96. Mattossi, H., Pauli, G. and Na, H.B. (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv.Drug Deliv. Rev.,64: 138-166.
97. Dabbousi, B.O., Rodriguez Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi,H., Ober, R., Jensen, K.F. and Bawendi, M.G.(1997). (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J.Phys.Chem.B.,101: 9463-9475.
98. Jorge, P.A.S., Martins, M.A., Trindade,T., Santos, J.L. and Farahi, F. (2007). Optical Fiber Sensing Using Quantum Dots . Sensors.,7: 3489-3534.
99. Liu,D. and Snee, P.T.(2011) . Water-Soluble Semiconductor Nanocrystals Cap Exchanged with Metalated Ligands. ACS Nano., 5: 546-550.
100. Zhang, Y.J., Schnoes,A.M. and Clapp, A. R. (2010). Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl.Mater.Interfaces.,2: 3384-395.
101. Zhou, D.J., Li,Y., Hall, E.A.H., Abell, C. and Klenerman,D.(2011). A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection. Nanoscale., 3: 201- 211.
102. Joy, J., Mathew, J. and George, S.C.(2018). Nanomaterials for photoelectrochemical water splitting e review. Int. J. Hydrog. Energy., 43: 4804-4817.
103. Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019). Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4: 1732-178.
104. Li, X., Hao, X., Abudula, A. and Guan, G. (2016). Nanostructured catalysts for electrochemical water splitting : Current aspects and prospects. J. Mater. Chem. A., 43:1-28.
105. Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S. and Kundu, S. (2016). Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal., 6: 8069-8097.
106. Mao, N. and Jiang, J-X.(2019). MgO/g-C3N4 nanocomposites as efficient water splitting photocatalysts under visible light irradiation. Appl. Surf. Sci.,476:144-150.
107. Wu, F., Ye, Y.S., Huang, J.Q., Zhao, T., Qian, J., Zhao, Y.Y., Li, L., Wei, L., Luo, R., Huang, Y.X., Xing, Y.and Chen, R.J.(2017). Sulfur Nano-Dots Stitched in 2D “Bubble-Like” Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium-Sulfur Batteries. ACS Nano, 11: 4694-4702.
108. . Kaur, M., Kaur, M. and Sharma, V.K.(2018). Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci., 259: 44-64.
109. Scherer, A., Craighead, H.G. and Beebe, E.D. (1987). Gallium arsenide and aluminum gallium arsenide reactive ion etching in boron trichloride/argon mixtures. J. Vac. Sci. Technol. B, 5: 1599– 1605.
110. Azharuddin, M., Zhu, G.H., Das, D., Ozgur, E., Uzun, L., Turner, A.P.F. and Patra, H.K.(2019). A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun., 55: 6964—6996.
111. Chason, E., Picraux, S.T., Poate, J.M., Borland, J.O., Current, M.I., delaRubia, T.D., Eaglesham, D.J., Holland, O.W., Law, M.E., Magee, C.W., Mayer, J.W., Melngailis, J. and Tasch, A.F.(1997). Ion beams in silicon processing and characterization. J. Appl. Phys., 81: 6513–6561.
112. Burda, C., Chen, X.B., Narayanan, R. and El-Sayed, M.A.(2005). Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 105: 1025–1102.
113. Sashchiuk, A., Lifshitz, E., Reisfeld, R., Saraidarov, T., Zelner, M. and Willenz, A. (2002). Optical and Conductivity Properties of PbS Nanocrystals in Amorphous Zirconia Sol-Gel Films. Sol-Gel Sci. Technol., 24: 31–38.
114. Yang, H., Holloway, P.H., Cunningham, G. and Schanze, K.S.(2004). CdS:Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. J. Chem. Phys.,121: 10233–10240.
115. Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J. and Brus, L.E.(1990). Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc.,112: 1327–1332.
116. Ogawa, S., Hu, K., Fan, F.R.F. and Bard, A.J.(1997). Photoelectrochemistry of Films of Quantum Size Lead Sulfide Particles Incorporated in Self-Assembled Monolayers on Gold. J. Phys. Chem. B , 101: 5707– 5711.
117. Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E. and White, J.M.(1992) . Demonstration of a Shell-Core Structure in Layered CdSe-ZnSe Small Particles by X-ray Photoelectron and Auger Spectroscopies .J. Phys. Chem. ,96: 3812–3817.
118. Murray, C.B., Norris, D.J. and Bawendi, M.G.(1993). J. Am. Chem. Soc.,115: 8706– 8715.
119. Qu, L.H., Peng, Z.A. and Peng, X.G.(2001). Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett., 1: 333–337.
120. Tsukamoto, S.,Bell, G.R. and Arakawa, Y.(2006). Heteroepitaxial growth of InAs on GaAs (0 0 1) by in situ STM located inside MBE growth chamber. Microelectron. J., 37: 1498– 1504.
121. Jiao, Y.H., Wu, J., Xu, B., Jin, P., Hu, L.J., Liang, L.Y. and Wang, Z.G.(2006). MBE InAs quantum dots grown on metamorphic InGaAs for long wavelength emitting. Physica E, 35:194–198.
122. Lobo, C. and Leon, R.(1998). InGaAs island shapes and adatom migration behavior on (100), (110), (111), and (311) GaAs surfaces. J. Appl. Phys., 83:4168–4172.
123. Murray, C.B., Kagan, C.R. and Bawendi, M.G. (2000). Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies .Annu. Rev. Mater.Sci., 30:545-610.
124. Mangolini, L., Thimsen, E. and Kortshagen, U.(2005). High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals .Nano. Lett., 5: 655-659.
125. Kortshagen, U.(2009). Nonthermal plasma synthesis of semiconductor nanocrystals. J. Phys.D:Appl. Phys.,42: 113001-113023.
126. Pi,D.X., Gresback, R., Liptak, R.W., Campbell, S.A. and Kortshagen, U.(2008). Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl. Phys.Lett., 92: 123102-123104.
127. Lee, S.W., Mao,C., Flynn, C.E. and Belcher, A.M.(2002).Ordering of Quantum Dots Using Genetically Engineered Viruses . Science, 296:892-897.
128. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. and Belcher, A.M.(2000). Selection of peptides with semiconductor binding speciacity for directed nanocrystal assembly. Nature., 405:665-673.
129. Jawaid, A.M., Chattopadhyay, S., Wink,D.J., Page, L.E. and Snee, P.T.(2013). Cluster-Seeded Synthesis of Doped CdSe:Cu4 Quantum Dots. ACS Nano, 7:3190-3197.
130. Trinadh, T., Khuntia, H., Anusha, T., Bhavani, K.S., Kumar,J.V.S. and Brahman,P.K.(2020). Synthesis and characterization of nanocomposite material based on graphene quantum dots and lanthanum doped zirconia nanoparticles: An electrochemical sensing application towards flutamide in urine samples. Diam. Relat. Mater.,110:108143-108177.
131. Drbohlavova ,J.,Adam, V., Kizek, R. and Hubalek, J.(2009). Quantum Dots — Characterization, Preparation and Usage in Biological Systems . Int. J. Mol. Sci., 10: 656-673.
132. Shamsa, K., Selvaraj, P., Rajaitha, M., Vinoth, S., Murugan, C., Rameshkumar, P. and Pandikuma,A.(2020). In situ formed zinc oxide/graphitic carbon nitride nanohybrid for the electrochemical determination of 4-nitrophenol. MicrochimActa , 187: 1-9.
133. Li, G., Wu, J., Jin, H., Xia, Y., Liu, J., He, Q. and Chen,D.(2020). Titania/Electro-Reduced Graphene Oxide Nanohybrid as an Efficient Electrochemical Sensor for the Determination of Allura Red. Nanomaterials, 10: ,1-9.
134. Chen, W.Y., Jiang, X., Lai, S-N., Peroulis, D. and Stanciu, L.(2020). Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun., 11: 1-10.
135. Mai, L.N.T., Bui, Q.B., Bach, L.G., Nhac-Vu, H.-T. (2019). A novel nanohybrid of cobalt oxide-sulfide nanosheets deposited three-dimensional foam as efficient sensor for hydrogen peroxide detection. J. Electroanal. Chem., 45:1-33.
136. Molaei, M.J. (2020). The optical properties and solar energy conversion applications of carbon quantum dots: A review. Sol Energy., 196:549-566.
137. Ma, Y., Mei, H., Li, Y., Zhou, P., Mao, G., Wang, H. and Wang, X. (2022). A novel raiometric fluorescence probe based on silicon quantum dots and copper nanoclusters for visual assay of L-cysteine in milks. Food Chem., 379:132155-132161.
138. Yao, T., Dong, G., Qian, S., Cui, Y., Chen, X., Tan, T. and Li, L. (2022). Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine. Sens. Actuators B Chem., 375:131470-131478.
139. Li, H., Sun, X., Xue, F., Ou, N., Sun, B-W., Qian,D., Chen,M., Wang, D., Yang, J. and Wang, X.(2018). Redox induced fluorescence on-off switching based on nitrogen enriched graphene quantum dots for formaldehyde detection and bioimaging ACS Sustain. Chem. Eng., 6:1708-1716.
140. Singh, J., Kaur, S., Lee, J., Mehta, A., Kumar, S., Kime, K-H., Basu, S. and Rawat , M.(2020). High fluorescent carbon dots derived from Magnifera indica leaves for selective detection of metal ions. Sci. Total Environ. , 137604: 1-8.
141. Sahub, C., Tuntulani, T., Nhujak, T. and Tomapatanaget, B. (2018). Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens. Actuators B Chem., 258 : 88–97.
142. Ensafi, A.A., Nasr-Esfahani, P. and Rezaei , B.(2017). Quenching-recovery for fluorescent biosensor for DNA detection based on mercaptopropionic acid-capped cadium telluride quantum dots aggregation. Sens. Actuators B Chem., 56:1- 36
143. Carvalho, I.C., Mansur, A.A.P., Carvalho, S.M., Florentino, R.M. and Mansur, H.S.(2019). L-cysteine and poly-L-arginine grafted carboxymethyl cellulose/Ag-In-S quantum dot fluorescent nanohybrids for in vitro bioimaging of brain cancer cells. Int. J. Biol., 133: 739–753.
144. Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sunb, H. and Yang, B. (2011). Strongly green-photofluorescent graphene quantum dots for bioimaging applications. Chem. Commun., 47: 6858–6860.
145. Manivannan, K., Cheng, C.C., Anbazhagan, R.K., Tsai, H.C. and Chen, J.K.(2018). Fabrication of silver seeds and nanoparticle on core-shell Ag@SiO2 nanohybrids for combined photothermal therapy and bioimaging. J. Colloid Interface Sci., 33:1-32.
146. Zhang, P. and Liu, W.(2010). ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials, 31: 3087–3094.
147. Zhao, C., Bai, Z., Liu, X., Zhang, Y.; Zouc, B. and Zhong, H. (2016). Small GSH—Capped CuInS2 Quantum Dots : MPA-Assisted Aqueous Phase Transfer and Bioimaging applications. ACS Appl. Mater. Interfaces, 7: 17623-17629.
148. Yu, K., Peter Ng, P., Ouyang, J., Zaman, M.B., Abulrob, A., Baral, T.N., Fatehi, D., Jakubek, Z.J., Kingston,D., Wu, X., Liu, X., Hebert, C., Leek, D.M. and Whitfield, D.M. (2013). Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Appl. Mater. Interfaces, 45:1-11.
149. Shivaj, K., Mani, S., Ponmurugan, P., Castro, C.S.D., Davies, M.L., Balasubramanian, M.G.and Pitchaimuthu, S.(2018). Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Appl. Nano Mater., 1: 1683−1693.
150. Kaur, R., Rana, A Singh, R.K., Varun, A., Chhabra, Kim, K-H. and Akashdeep.(2017). Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv., 7: 29015–29024.
151. Shi,J., Li, F., Yuan, J., Ling, X., Zhou, S., Qian, Y. and Ma, W.(2019). Efficient and stable CsPbI3 pervoskite quantum dots enabled by insitu ytterbium doping for photovoltaic applications. J.Mater. Chem A, 7:20936-20944.
152. Zhou, S., Liu, Z., Wang, Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F., Yuan, J. and Ma,W.(2018).Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. J. Mater. Chem. C, 7: 1575-1583.
153. Chistyakov, A. A., Zvaigzne, M.A., Nikitenko, V. R. , Tameev, A. R. , Martynov, I. L. and Prezhdo, O. V.(2017). Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications. J. Phys. Chem. Lett., 8: 4129−4139.
154. Oregan, B. and Gratzel, M. A.(1991). A low cost, High-efficiency Solar Cell based on Dye-Sensitized colloidal TiO2 films. Nature, 353: 737–740.
155. Gratzel, M.(2001). Photoelectrochemical cells. Nature , 414: 338–344.
156. Vogel, R., Hoyer, P. and Weller, H.(1994). Quantum sized PbS, CdS,Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various Nanoporous Wide-Bandgap Semiconductors. J. Phys. Chem., 98: 3183–3188.
157. Anjum , M., Oves, M., Kumar, R. and Barakat, M.A (2016). Fabrication of ZnO-ZnS @ polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater. Int. Biodeterior. Biodegradation, 119:66-77.
158. Yousafa,S., Kousara , T., Taja , M.B., Agboolab , P.O., Shakirc , I. and Warsi, M.F.(2019). Synthesis and characterization of double heterojunction-graphene nanohybrids for photocatalytic application. Ceram. Int., 45 : 17806–17817.
159. Zia, J., Aazam, E.S. and Riaz, U. (2020). Highly efficient visible light driven photocatalytic activity of MnO2 and Polythiophene/MnO2 nanohybrids against mixed organic pollutants. J. Mol. Struct., 1207: 127790-122782.
160. Guo, R., Wang, Y., Li, J., Cheng, X. and Dionysiou, D.D.(2020). Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide. Appl. Catal. B: Environmental, 278:119297-119349.
161. Zhao, Y., Liang, X., Shi, H., Wang, Y., Ren, Y., Liu, E., Zhang, X., Fan, J. and Hu, X.(2018). Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment. Chem.Eng.Sci., 353:56-68.
162. Santhosh, C., Malathi, A., Daneshvar, E., Kollu, P. and Bhatnagar, A.(2018). Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Sci. Rep., 8:15531.
163. Jacob, J.M., Rajan, R., Aji, M., Kurup, G.G., Pugazhendhi, A.(2019). Bio-inspired Zns quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase. Ceram. Int., 45:4857-4862.
164. Zhang, M., Yi Zhang, Y., Tang, L., Zeng, G., Wang, J., Zhu, Y., Feng, C., Deng, D. and He, W.(2019). Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation. J. Colloid Interface Sci., 539:654–664.
165. Jianga, R., Wua, D., Lua,G., Yana, Z., Liua, J., Zhoua, R. and Nkoom, M.(2019). Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. J. Taiwan Inst ChemEng., 96:681–690.
166. Dewangan, L., Korram, J., Karbhal, I., Nagwanshi, R., Jena, V.K. and Satnami, M.L.(2019). A colorimetric nanoprobe based on enzymeimmobilized silver nanoparticles for the efficient detection of cholesterol. RSC Adv., 9: 42085-42095.
167. Satnami, M.L., Korram, J., Nagwanshi, R., Vaishanav, S.K., Karbhal, I., Dewangan, H.K. and Ghosh, K.K. (2018). : Gold Nanoprobe for Inhibition and Reactivation of Acetylcholinesterase: An Application to Detection of Organophosphorus Pesticides. Sens. Actuators B: Chem., 267: 155-164.
168. Vaishanav, S. K., Korram, J., Pradhan, P., Chandraker, K., Nagwanshi, R., Ghosh, K.K. and Satnami, M.L.(2017). Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III. ). J. fluorescence, 27: 781-789.
169. Vaishanav, S. K., Korram, J., Nagwanshi, R., Ghosh, K.K. and Satnami, M.L.(2017). : Mn2+ Doped-CdTe/ZnS Modified Fluorescence Nanosensor for Detection of Glucose. Sens Actuators B: Chem., 245: 196-204.
170. Favaro, M., Cattelan, M., Price, S.W.T., Russell, A.E., Laura Calvillo, L., Stefano Agnoli, S. and Granozzi, G. (2020). In situ study of graphene oxide quantum dot-MoSx 3 nanohybrids as hydrogen evolution catalysts. Surfaces, 3: 225–236.
171. Feng, X., Han, G., Cai, J. and Wang, X. (2022). Au@ Carbon Quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitite. J. Colloid Interface Sci., 607:1313-1322.
172. Pondprom, A., Chansud, N. and Bunkoed, O. (2022). A fluorescence sensor probe based on porous carbon, molecularly imprinted polymer and graphene quantum dots for the detection of trace sulfadimethoxine. J. Photochem.Photobio. A., 427: 113812.
173. Huang, Z., Ceron, M.L., Feng, K., Wang, D., Camarada, M.B. and Liao, X. (2022). Anchoring black phosphorus quantum dots over carboxylated multiwalled carbon nanotubes : A stable 0D/1D nanohybrid with high sensing performance to Ochratoxin a. Appl. Surf. Sci., 583: 152429-152436.
174. Chen, F., Gao, W., Qiu, X., Zhang, H., Liu, L., Liao, P., Fu, W and Luo,Y. (2018). Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine, 1: 192-199.
175. Kumar, A., Singh, K.R.B., Ghate, M.D., Lalhlenmawia, H., Kumar, D. and Singh, J. (2022). Bioinspired quantum dots for cancer therapy. Mater. Lett., 313:131742-131766.
176. Chen, L., Chen, C-W., Huang, C-P., Chuang, Y., Nguyen, T-B. and Dong, C-D. (2022). A visible light-sensitive MoSSe nanohybrid for the photocatalytic degradation of tetracycline, oxytetracycline and chlortetracycline. J. Colloid InterfaceSci., 616:67-68.
177. Zedan, M., Zedan, A.F., Amin, R.H. and Li, X. (2022). Visible-light active metal nanoparticles@carbon nitride for enchanced removal of water organic pollutants. J. Environ.Chem.Eng.,10:107780.