Abstract View

Author(s): Nikita Verma, Swarnlata Saraf

Email(s): swarnlata_saraf@rediffmail.com

Address: University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur - 492 010, India.

Published In:   Volume - 29,      Issue - 1,     Year - 2016

DOI: Not Available

In the present study the nanoprecipitation (or solvent displacement) method was employed to prepare the Chitosan -QUNLS with improved drug incorporation and loading properties. The response surface method with quadratic model was employed to study the effect of selected parameters in the formulation of nanoparticles. The response variable of optimized formulation was fond to be percentage drug entrapment efficiency 51%, 2.89% drug loading capacity and 31.4% drug release. The drug entrapment efficiency of the nanoparticles increases with polymer ratio. Delivery system F, (with Drug:Polymer ratio 1:45), sonication time 15 min. showed maximum drug entrapment efficiency (51%) and Drug loading capacity 2.89% and maximum drug release 31.4% and the mannosylated form of these formulation sahowed 39.1%entrapment efficiency, 1.79% drug loading capacity. These optimized nanocarrier also showed diffusion controlled prolonged release of medicament as indicated shown by in-vitro drug relcase studies. The average size of the optimized formulation were around 112 nm and the average diameter of mannosylated form were 125.7 and zetapotential value -24.4 and -23.7 respectively. The resultant nanoparticles were nearly rough rather than smooth as seen under TEM. All the result provides supplementary evidences that the QUNLS have good entrapment efficiency and drug loading capacity than the mannosylated nanoparticles (M-QUNLS). And on the basis of results we can concluded that the QUNLS and M-QUNLS have good entrapment efficiency, drug loading capacity, mean particle size diameter and zeta potential by the stability point of view and have great targeting and prolonged release effect with great potential in topical delivery.

Cite this article:
Verma and Saraf (2016). Designing of Quercetin Loaded Mannosylated Nanoparticles for Treatment of Skin Cancer. Journal of Ravishankar University (Part-B: Science), 29(1), pp.143-144.

References not available.

Related Images:

Recent Images

Modeling of Abnormal Hysteresis in CsPbBr3 based Perovskite Solar Cells
Impact of Melatonin on Growth and Antioxidant Activity of Cicer arietinum L. Grown under Arsenic Stress
Assessment of Cymoxanil in Soil, Water and Vegetable Samples
Various Techniques of MPPT Based Charge Controller & Comparison of A/C with D/C Home Appliances - A Review
Need of Gallium Recovery from Waste Samples: A Review
Higher Order Statistics Based Blind Steg analysis using Deep Learning
Covid-19 related School Closure Impact on School going Children & Adolescents of Raipur, Chhattisgarh
Determination of Pentachlorophenol in Environmental Samples by Spectrophotometry
Simple and Cost Effective Polymer Modified Gold Nanoparticles Based on Colorimetric Determination of L-Cysteine in Food Samples
Investigation on Design and Device Modeling of High Performance CH3NH3PbI3-xClx Perovskite Solar Cells


Recomonded Articles:

Author(s): Nikita Verma; Swarnlata Saraf

DOI:         Access: Open Access Read More

Author(s): Roshan Ramteke; Simran Kukreja; Shruti Motwani; Arti Shanware

DOI:         Access: Open Access Read More

Author(s): E Susithra; D Chamundeswari; Padma Srikanth; Rajasekhar Chekkara; B Sesha Poornima

DOI:         Access: Open Access Read More

Author(s): Renu Bhatt; Neha Pandey

DOI:         Access: Open Access Read More

Author(s): Manmohan S Jangdey; Anshita Gupta; Shailendra Saraf; Swarnlata Saraf

DOI:         Access: Open Access Read More

Author(s): Rajendra Jangde; Deependra Singh

DOI:         Access: Open Access Read More