References
Alamoudi, A. A., Alharbi, A. S.,
Abdel-Naim, A. B., Badr-Eldin, S. M., Awan, Z. A., Okbazghi, S. Z., Ahmed, O.
A. A., Alhakamy, N. A., Fahmy, U. A., & Esmat, A. (2022). Novel
Nanoconjugate of Apamin and Ceftriaxone for Management of Diabetic Wounds. Life,
12(7), 1096. https://doi.org/10.3390/life12071096
Alipal, J., Mohd Pu’ad, N. A. S., Lee,
T. C., Nayan, N. H. M., Sahari, N., Basri, H., Idris, M. I., & Abdullah,
H. Z. (2019). A review of gelatin: Properties, sources, process, applications,
and commercialisation. Materials Today: Proceedings, 42,
240–250. https://doi.org/10.1016/j.matpr.2020.12.922
Alven, S., Peter, S., Mbese, Z., &
Aderibigbe, B. A. (2022). Polymer-Based Wound Dressing Materials Loaded with
Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. In
Polymers (Vol. 14, Issue 4). MDPI.
https://doi.org/10.3390/polym14040724
Ashford, M. B., England, R. M., &
Akhtar, N. (2021). Highway to Success—Developing Advanced Polymer
Therapeutics. In Advanced Therapeutics (Vol. 4, Issue 5). John Wiley
and Sons Inc. https://doi.org/10.1002/adtp.202000285
Bai, Q., Han, K., Dong, K., Zheng, C.,
Zhang, Y., Long, Q., & Lu, T. (2020). Potential applications of
nanomaterials and technology for diabetic wound healing. In International
Journal of Nanomedicine (Vol. 15, pp. 9717–9743). Dove Medical Press Ltd.
https://doi.org/10.2147/IJN.S276001
Berninger, T., Dietz, N., &
González López, Ó. (2021). Water-soluble polymers in agriculture: xanthan gum
as eco-friendly alternative to synthetics. In Microbial Biotechnology.
John Wiley and Sons Ltd. https://doi.org/10.1111/1751-7915.13867
Boni, R., Ali, A., Shavandi, A., &
Clarkson, A. N. (2018). Current and novel polymeric biomaterials for neural
tissue engineering. In Journal of Biomedical Science (Vol. 25, Issue
1). BioMed Central Ltd. https://doi.org/10.1186/s12929-018-0491-8
Burgess, J. L., Wyant, W. A., Abujamra,
B. A., Kirsner, R. S., & Jozic, I. (2021). Diabetic wound-healing science.
In Medicina (Lithuania) (Vol. 57, Issue 10). MDPI.
https://doi.org/10.3390/medicina57101072
Chen, J., Cheng, H., Zhi, Z., Zhang,
H., Linhardt, R. J., Zhang, F., Chen, S., & Ye, X. (2021). Extraction
temperature is a decisive factor for the properties of pectin. Food
Hydrocolloids, 112. https://doi.org/10.1016/j.foodhyd.2020.106160
Chereddy, K. K., Lopes, A.,
Koussoroplis, S., Payen, V., Moia, C., Zhu, H., Sonveaux, P., Carmeliet, P.,
des Rieux, A., Vandermeulen, G., & Préat, V. (2015). Combined effects of
PLGA and vascular endothelial growth factor promote the healing of non-diabetic
and diabetic wounds. Nanomedicine: Nanotechnology, Biology, and Medicine,
11(8), 1975–1984. https://doi.org/10.1016/j.nano.2015.07.006
Choi, J. U., Lee, S. W., Pangeni, R.,
Byun, Y., Yoon, I. S., & Park, J. W. (2017). Preparation and in vivo
evaluation of cationic elastic liposomes comprising highly skin-permeable
growth factors combined with hyaluronic acid for enhanced diabetic wound-healing
therapy. Acta Biomaterialia, 57, 197–215.
https://doi.org/10.1016/j.actbio.2017.04.034
de Melo, B. A. G., Jodat, Y. A., Cruz,
E. M., Benincasa, J. C., Shin, S. R., & Porcionatto, M. A. (2020).
Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft
and hard tissues. In Acta Biomaterialia (Vol. 117, pp. 60–76). Acta
Materialia Inc. https://doi.org/10.1016/j.actbio.2020.09.024
Della Sala, F., Longobardo, G.,
Fabozzi, A., Di Gennaro, M., & Borzacchiello, A. (2022). Hyaluronic
Acid‐Based Wound Dressing with Antimicrobial Properties for Wound Healing
Application. In Applied Sciences (Switzerland) (Vol. 12, Issue 6).
MDPI. https://doi.org/10.3390/app12063091
Diksha, S., Dhruv, D., & Mansi, H.
(2019). Sustained Release Drug Delivery System with the Role of Natural
Polymers: A review. https://doi.org/10.22270/jddt.v9i3
Donato, R. K., & Mija, A. (2020).
Keratin associations with synthetic, biosynthetic and natural polymers: An
extensive review. In Polymers (Vol. 12, Issue 1). MDPI AG.
https://doi.org/10.3390/polym12010032
Edmonds, M., & Foster, A. (2004).
The use of antibiotics in the diabetic foot. American Journal of Surgery,
187(5 SUPPL. 1), S25–S28. https://doi.org/10.1016/S0002-9610(03)00300-3
El-Aassar, M. R., Ibrahim, O. M.,
Fouda, M. M. G., Fakhry, H., Ajarem, J., Maodaa, S. N., Allam, A. A., &
Hafez, E. E. (2021). Wound dressing of chitosan-based-crosslinked gelatin/
polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug
resistance microbes. Carbohydrate Polymers, 255.
https://doi.org/10.1016/j.carbpol.2020.117484
El-Salamouni, N. S., Gowayed, M. A.,
Seiffein, N. L., Abdel- Moneim, R. A., Kamel, M. A., & Labib, G. S.
(2021). Valsartan solid lipid nanoparticles integrated hydrogel: A challenging
repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo
experimental study. International Journal of Pharmaceutics, 592.
https://doi.org/10.1016/j.ijpharm.2020.120091
Farokhi, M., Mottaghitalab, F., Reis,
R. L., Ramakrishna, S., & Kundu, S. C. (2020). Functionalized silk fibroin
nanofibers as drug carriers: Advantages and challenges. In Journal of
Controlled Release (Vol. 321, pp. 324–347). Elsevier B.V.
https://doi.org/10.1016/j.jconrel.2020.02.022
Frykberg, R. G., & Banks, J.
(2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound
Care, 4(9), 560–582. https://doi.org/10.1089/wound.2015.0635
Gajre, V. (, & Kulkarni, ). (2012).
Natural Polymers-A comprehensive Review. In Article in International
Journal of Research in Pharmaceutical and Biomedical Sciences.
https://www.researchgate.net/publication/236217541
Gao, D., Zhang, Y., Bowers, D. T., Liu,
W., & Ma, M. (2021a). Functional hydrogels for diabetic wound management.
In APL Bioengineering (Vol. 5, Issue 3). American Institute of Physics
Inc. https://doi.org/10.1063/5.0046682
Gao, D., Zhang, Y., Bowers, D. T., Liu,
W., & Ma, M. (2021b). Functional hydrogels for diabetic wound management.
In APL Bioengineering (Vol. 5, Issue 3). American Institute of Physics
Inc. https://doi.org/10.1063/5.0046682
George, A., Shah, P. A., &
Shrivastav, P. S. (2019). Guar gum: Versatile natural polymer for drug
delivery applications. In European Polymer Journal (Vol. 112, pp.
722–735). Elsevier Ltd. https://doi.org/10.1016/j.eurpolymj.2018.10.042
Ghosh, D., & Karmakar, P. (2021).
Insight into anti-oxidative carbohydrate polymers from medicinal plants:
Structure-activity relationships, mechanism of actions and interactions with
bovine serum albumin. In International Journal of Biological Macromolecules
(Vol. 166, pp. 1022–1034). Elsevier B.V.
https://doi.org/10.1016/j.ijbiomac.2020.10.258
Glover, K., Mathew, E., Pitzanti, G.,
Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic
wound-healing applications. Drug Delivery and Translational Research.
https://doi.org/10.1007/s13346-022-01115-8
Gregory, H., & Phillips, J. B.
(2021). Materials for peripheral nerve repair constructs: Natural proteins or
synthetic polymers? Neurochemistry International, 143.
https://doi.org/10.1016/j.neuint.2020.104953
Ilyas, R. A., Aisyah, H. A., Nordin, A.
H., Ngadi, N., Zuhri, M. Y. M., Asyraf, M. R. M., Sapuan, S. M., Zainudin, E.
S., Sharma, S., Abral, H., Asrofi, M., Syafri, E., Sari, N. H., Rafidah, M.,
Zakaria, S. Z. S., Razman, M. R., Majid, N. A., Ramli, Z., Azmi, A., …
Ibrahim, R. (2022). Natural-Fiber-Reinforced Chitosan, Chitosan Blends and
Their Nanocomposites for Various Advanced Applications. In Polymers
(Vol. 14, Issue 5). MDPI. https://doi.org/10.3390/polym14050874
Jee, J. P., Pangeni, R., Jha, S. K.,
Byun, Y., & Park, J. W. (2019). Preparation and in vivo evaluation of a
topical hydrogel system incorporating highly skin-permeable growth factors,
quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. International
Journal of Nanomedicine, 14, 5449–5475.
https://doi.org/10.2147/IJN.S213883
Kabir, I. I., Sorrell, C. C., Mofarah,
S. S., Yang, W., Yuen, A. C. Y., Nazir, M. T., & Yeoh, G. H. (2021).
Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure,
Properties, and Applications. In Polymer Reviews (Vol. 61, Issue 2, pp.
357–414). Bellwether Publishing, Ltd.
https://doi.org/10.1080/15583724.2020.1801726
Kanungo, M., Wang, Y., Hutchinson, N.,
Kroll, E., Debruine, A., Kumpaty, S., Ren, L., Wu, Y., Hua, X., & Zhang,
W. (2021). Development of gelatin‐coated microspheres for novel bioink design.
Polymers, 13(19). https://doi.org/10.3390/polym13193339
Lee, C. H., Chang, S. H., Chen, W. J.,
Hung, K. C., Lin, Y. H., Liu, S. J., Hsieh, M. J., Pang, J. H. S., &
Juang, J. H. (2015). Augmentation of diabetic wound healing and enhancement of
collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold
membranes. Journal of Colloid and Interface Science, 439, 88–97.
https://doi.org/10.1016/j.jcis.2014.10.028
Lei, C., Liu, X. R., Chen, Q. B., Li,
Y., Zhou, J. L., Zhou, L. Y., & Zou, T. (2021). Hyaluronic acid and
albumin based nanoparticles for drug delivery. In Journal of Controlled
Release (Vol. 331, pp. 416–433). Elsevier B.V.
https://doi.org/10.1016/j.jconrel.2021.01.033
Li, Y., Chen, X., Ji, J., Li, L., &
Zhai, G. (2021). Redox-responsive nanoparticles based on Chondroitin Sulfate
and Docetaxel prodrug for tumor targeted delivery of Docetaxel. Carbohydrate
Polymers, 255. https://doi.org/10.1016/j.carbpol.2020.117393
Losi, P., Briganti, E., Errico, C.,
Lisella, A., Sanguinetti, E., Chiellini, F., & Soldani, G. (2013).
Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles
stimulates wound healing in diabetic mice. Acta Biomaterialia, 9(8),
7814–7821. https://doi.org/10.1016/j.actbio.2013.04.019
Maarof, M., Nadzir, M. M., Mun, L. S.,
Fauzi, M. B., Chowdhury, S. R., Idrus, R. B. H., & Lokanathan, Y. (2021).
Hybrid collagen hydrogel/chondroitin-4-sulphate fortified with dermal
fibroblast conditioned medium for skin therapeutic application. Polymers,
13(4), 1–14. https://doi.org/10.3390/polym13040508
Maitz, M. F. (2015). Applications of
synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3),
161–176. https://doi.org/10.1016/j.bsbt.2015.08.002
Moradpoor, H., Mohammadi, H., Safaei,
M., Mozaffari, H. R., Sharifi, R., Gorji, P., Sulong, A. B., Muhamad, N.,
& Ebadi, M. (2022). Recent Advances on Bacterial Cellulose-Based Wound
Management: Promises and Challenges. In International Journal of Polymer
Science (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/1214734
Naskar, A., & Kim, K. S. (2020).
Recent advances in nanomaterial-based wound-healing therapeutics. In Pharmaceutics
(Vol. 12, Issue 6). MDPI AG. https://doi.org/10.3390/pharmaceutics12060499
Ogaji, I. J., Nep, E. I., &
Audu-Peter, J. D. (2012). Advances in Natural Polymers as Pharmaceutical
Excipients. Pharmaceutica Analytica Acta, 03(01).
https://doi.org/10.4172/2153-2435.1000146
Patel, S., Srivastava, S., Singh, M.
R., & Singh, D. (2019). Mechanistic insight into diabetic wounds:
Pathogenesis, molecular targets and treatment strategies to pace wound
healing. In Biomedicine and Pharmacotherapy (Vol. 112). Elsevier Masson
SAS. https://doi.org/10.1016/j.biopha.2019.108615
Petitjean, M., García-Zubiri, I. X.,
& Isasi, J. R. (2021). History of cyclodextrin-based polymers in food and
pharmacy: a review. In Environmental Chemistry Letters (Vol. 19, Issue
4, pp. 3465–3476). Springer Science and Business Media Deutschland GmbH.
https://doi.org/10.1007/s10311-021-01244-5
Pyun, D. G., Choi, H. J., Yoon, H. S.,
Thambi, T., & Lee, D. S. (2015). Polyurethane foam containing rhEGF as a
dressing material for healing diabetic wounds: Synthesis, characterization, in
vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 135,
699–706. https://doi.org/10.1016/j.colsurfb.2015.08.029
Rao, S. H., Harini, B., Shadamarshan,
R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and
synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in
bone tissue engineering. In International Journal of Biological
Macromolecules (Vol. 110, pp. 88–96). Elsevier B.V.
https://doi.org/10.1016/j.ijbiomac.2017.09.029
Reddy, M. S. B., Ponnamma, D.,
Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural
and synthetic biopolymer composite scaffolds. In Polymers (Vol. 13,
Issue 7). MDPI AG. https://doi.org/10.3390/polym13071105
Rezvani Ghomi, E., Nourbakhsh, N.,
Akbari Kenari, M., Zare, M., & Ramakrishna, S. (2021). Collagen-based
biomaterials for biomedical applications. In Journal of Biomedical
Materials Research - Part B Applied Biomaterials (Vol. 109, Issue 12, pp.
1986–1999). John Wiley and Sons Inc. https://doi.org/10.1002/jbm.b.34881
Riseh, R. S., Vazvani, M. G., Zarandi,
M., & Skorik, Y. A. (2022). Alginate-Induced Disease Resistance in Plants.
In Polymers (Vol. 14, Issue 4). MDPI.
https://doi.org/10.3390/polym14040661
Sanchez Ramirez, D. O., Cruz-Maya, I.,
Vineis, C., Tonetti, C., Varesano, A., & Guarino, V. (2021). Design of
asymmetric nanofibers-membranes based on polyvinyl alcohol and wool-keratin
for wound healing applications. Journal of Functional Biomaterials, 12(4).
https://doi.org/10.3390/jfb12040076
Sanju, S., Tallapaneni, V., Narukulla,
S., Pamu, D., Mude, L., & Karri, V. V. S. R. (2021). Micro and
nanoparticles for the delivery of growth factors in diabetic wounds. In Journal
of Medical Pharmaceutical and Allied Sciences (Vol. 10, Issue 5, pp.
3552–3559). MEDIC SCIENTIFIC. https://doi.org/10.22270/jmpas.V10I5.1470
Shah, S. A., Sohail, M., Khan, S.,
Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., &
Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic
wound healing: A critical review. In International Journal of Biological
Macromolecules (Vol. 139, pp. 975–993). Elsevier B.V.
https://doi.org/10.1016/j.ijbiomac.2019.08.007
Silva Pereira, R. L., Campina, F. F.,
Costa, M. do S., Pereira da Cruz, R., Sampaio de Freitas, T., Lucas dos
Santos, A. T., Cruz, B. G., Maciel de Sena Júnior, D., Campos Lima, I. K.,
Xavier, M. R., Rodrigues Teixeira, A. M., Alencar de Menezes, I. R., Quintans-Júnior,
L. J., Araújo, A. A. de S., & Melo Coutinho, H. D. (2021). Antibacterial
and modulatory activities of β-cyclodextrin complexed with (+)-β-citronellol
against multidrug-resistant strains. Microbial Pathogenesis, 156.
https://doi.org/10.1016/j.micpath.2021.104928
Wu, F., Misra, M., & Mohanty, A. K.
(2021). Challenges and new opportunities on barrier performance of
biodegradable polymers for sustainable packaging. In Progress in Polymer
Science (Vol. 117). Elsevier Ltd.
https://doi.org/10.1016/j.progpolymsci.2021.101395
Wu, S. C., Marston, W., &
Armstrong, D. G. (n.d.). Strategies to Prevent and Heal Diabetic Foot
Ulcers: A Joint Publication of APMA and SVS SPECIAL COMMUNICATION Wound Care
The Role of Advanced Wound-healing Technologies.
Yang, X., Wang, B., Peng, D., Nie, X.,
Wang, J., Yu, C.-Y., & Wei, H. (2022). Hyaluronic Acid‐Based Injectable
Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Advanced
NanoBiomed Research, 2(12), 2200124.
https://doi.org/10.1002/anbr.202200124
Yu, J., Wang, D., Geetha, N., Khawar,
K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in
the synthesis and applications of chitosan-based nanocomposites for plants: A
review. In Carbohydrate Polymers (Vol. 261). Elsevier Ltd.
https://doi.org/10.1016/j.carbpol.2021.117904
Yu, L., & Wei, M. (2021).
Biomineralization of collagen-based materials for hard tissue repair. In International
Journal of Molecular Sciences (Vol. 22, Issue 2, pp. 1–17). MDPI AG.
https://doi.org/10.3390/ijms22020944
Zdunek, A., Pieczywek, P. M., &
Cybulska, J. (2021). The primary, secondary, and structures of higher levels
of pectin polysaccharides. Comprehensive Reviews in Food Science and Food
Safety, 20(1), 1101–1117. https://doi.org/10.1111/1541-4337.12689