Abstract View

Author(s): Harish Bhardwaj, Sulekha Khute, Rajendra Kumar Jangde

Email(s): rjangdepy@gmail.com

Address: University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G) 492010 India.
*Corresponding author: Email: rjangdepy@gmail.com

Published In:   Volume - 36,      Issue - 2,     Year - 2023

DOI: 10.52228/JRUB.2023-36-2-7  

The compromised wound healing observed in diabetic patients poses significant hurdles, escalating the risk of infections. The growing interest in natural polymeric materials is fueled by their abundant availability, cost-effectiveness, and eco-friendly attributes. Advances in polymer science have expanded the applications, especially in tissue engineering and regenerative medicine. These interdisciplinary fields integrate knowledge and technology from diverse domains to restore damaged tissues and organs in medical interventions. Polymers function as versatile tools, serving as carriers for drugs and cells and facilitating host-cell integration to meet the requisites of regeneration and repair. This intricate process involves multiple stages, necessitating the development of various components to construct the desired neo-tissue or organ. Diverse biopolymers, encompassing biological, synthetic, and hybrid varieties, find extensive utility across various medical applications. Their tunable physical, chemical, and biological properties render them ideal for tailoring to specific application requirements. This review provides a comprehensive overview of the wound-healing process, with a specific focus on the challenges presented by diabetic wounds. Additionally, it explores various biopolymers, including alginate, gelatin, cellulose, silk sericin, chondroitin sulfate, chitosan, xanthan gum, cyclodextrin, and hyaluronic acid, elucidating their roles in the management of diabetic wounds.

Cite this article:
Bhardwaj, Khute and Jangde (2023). Biopolymeric Materials in the Management of Diabetic Wound Healing: A Comprehensive Review. Journal of Ravishankar University (Part-B: Science), 36(2), pp. 94-108.DOI: https://doi.org/10.52228/JRUB.2023-36-2-7


Alamoudi, A. A., Alharbi, A. S., Abdel-Naim, A. B., Badr-Eldin, S. M., Awan, Z. A., Okbazghi, S. Z., Ahmed, O. A. A., Alhakamy, N. A., Fahmy, U. A., & Esmat, A. (2022). Novel Nanoconjugate of Apamin and Ceftriaxone for Management of Diabetic Wounds. Life, 12(7), 1096. https://doi.org/10.3390/life12071096

Alipal, J., Mohd Pu’ad, N. A. S., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., Idris, M. I., & Abdullah, H. Z. (2019). A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 42, 240–250. https://doi.org/10.1016/j.matpr.2020.12.922

Alven, S., Peter, S., Mbese, Z., & Aderibigbe, B. A. (2022). Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. In Polymers (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/polym14040724

Ashford, M. B., England, R. M., & Akhtar, N. (2021). Highway to Success—Developing Advanced Polymer Therapeutics. In Advanced Therapeutics (Vol. 4, Issue 5). John Wiley and Sons Inc. https://doi.org/10.1002/adtp.202000285

Bai, Q., Han, K., Dong, K., Zheng, C., Zhang, Y., Long, Q., & Lu, T. (2020). Potential applications of nanomaterials and technology for diabetic wound healing. In International Journal of Nanomedicine (Vol. 15, pp. 9717–9743). Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S276001

Berninger, T., Dietz, N., & González López, Ó. (2021). Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. In Microbial Biotechnology. John Wiley and Sons Ltd. https://doi.org/10.1111/1751-7915.13867

Boni, R., Ali, A., Shavandi, A., & Clarkson, A. N. (2018). Current and novel polymeric biomaterials for neural tissue engineering. In Journal of Biomedical Science (Vol. 25, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12929-018-0491-8

Burgess, J. L., Wyant, W. A., Abujamra, B. A., Kirsner, R. S., & Jozic, I. (2021). Diabetic wound-healing science. In Medicina (Lithuania) (Vol. 57, Issue 10). MDPI. https://doi.org/10.3390/medicina57101072

Chen, J., Cheng, H., Zhi, Z., Zhang, H., Linhardt, R. J., Zhang, F., Chen, S., & Ye, X. (2021). Extraction temperature is a decisive factor for the properties of pectin. Food Hydrocolloids, 112. https://doi.org/10.1016/j.foodhyd.2020.106160

Chereddy, K. K., Lopes, A., Koussoroplis, S., Payen, V., Moia, C., Zhu, H., Sonveaux, P., Carmeliet, P., des Rieux, A., Vandermeulen, G., & Préat, V. (2015). Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(8), 1975–1984. https://doi.org/10.1016/j.nano.2015.07.006

Choi, J. U., Lee, S. W., Pangeni, R., Byun, Y., Yoon, I. S., & Park, J. W. (2017). Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomaterialia, 57, 197–215. https://doi.org/10.1016/j.actbio.2017.04.034

de Melo, B. A. G., Jodat, Y. A., Cruz, E. M., Benincasa, J. C., Shin, S. R., & Porcionatto, M. A. (2020). Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. In Acta Biomaterialia (Vol. 117, pp. 60–76). Acta Materialia Inc. https://doi.org/10.1016/j.actbio.2020.09.024

Della Sala, F., Longobardo, G., Fabozzi, A., Di Gennaro, M., & Borzacchiello, A. (2022). Hyaluronic Acid‐Based Wound Dressing with Antimicrobial Properties for Wound Healing Application. In Applied Sciences (Switzerland) (Vol. 12, Issue 6). MDPI. https://doi.org/10.3390/app12063091

Diksha, S., Dhruv, D., & Mansi, H. (2019). Sustained Release Drug Delivery System with the Role of Natural Polymers: A review. https://doi.org/10.22270/jddt.v9i3

Donato, R. K., & Mija, A. (2020). Keratin associations with synthetic, biosynthetic and natural polymers: An extensive review. In Polymers (Vol. 12, Issue 1). MDPI AG. https://doi.org/10.3390/polym12010032

Edmonds, M., & Foster, A. (2004). The use of antibiotics in the diabetic foot. American Journal of Surgery, 187(5 SUPPL. 1), S25–S28. https://doi.org/10.1016/S0002-9610(03)00300-3

El-Aassar, M. R., Ibrahim, O. M., Fouda, M. M. G., Fakhry, H., Ajarem, J., Maodaa, S. N., Allam, A. A., & Hafez, E. E. (2021). Wound dressing of chitosan-based-crosslinked gelatin/ polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydrate Polymers, 255. https://doi.org/10.1016/j.carbpol.2020.117484

El-Salamouni, N. S., Gowayed, M. A., Seiffein, N. L., Abdel- Moneim, R. A., Kamel, M. A., & Labib, G. S. (2021). Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. International Journal of Pharmaceutics, 592. https://doi.org/10.1016/j.ijpharm.2020.120091

Farokhi, M., Mottaghitalab, F., Reis, R. L., Ramakrishna, S., & Kundu, S. C. (2020). Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. In Journal of Controlled Release (Vol. 321, pp. 324–347). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2020.02.022

Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560–582. https://doi.org/10.1089/wound.2015.0635

Gajre, V. (, & Kulkarni, ). (2012). Natural Polymers-A comprehensive Review. In Article in International Journal of Research in Pharmaceutical and Biomedical Sciences. https://www.researchgate.net/publication/236217541

Gao, D., Zhang, Y., Bowers, D. T., Liu, W., & Ma, M. (2021a). Functional hydrogels for diabetic wound management. In APL Bioengineering (Vol. 5, Issue 3). American Institute of Physics Inc. https://doi.org/10.1063/5.0046682

Gao, D., Zhang, Y., Bowers, D. T., Liu, W., & Ma, M. (2021b). Functional hydrogels for diabetic wound management. In APL Bioengineering (Vol. 5, Issue 3). American Institute of Physics Inc. https://doi.org/10.1063/5.0046682

George, A., Shah, P. A., & Shrivastav, P. S. (2019). Guar gum: Versatile natural polymer for drug delivery applications. In European Polymer Journal (Vol. 112, pp. 722–735). Elsevier Ltd. https://doi.org/10.1016/j.eurpolymj.2018.10.042

Ghosh, D., & Karmakar, P. (2021). Insight into anti-oxidative carbohydrate polymers from medicinal plants: Structure-activity relationships, mechanism of actions and interactions with bovine serum albumin. In International Journal of Biological Macromolecules (Vol. 166, pp. 1022–1034). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2020.10.258

Glover, K., Mathew, E., Pitzanti, G., Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-022-01115-8

Gregory, H., & Phillips, J. B. (2021). Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochemistry International, 143. https://doi.org/10.1016/j.neuint.2020.104953

Ilyas, R. A., Aisyah, H. A., Nordin, A. H., Ngadi, N., Zuhri, M. Y. M., Asyraf, M. R. M., Sapuan, S. M., Zainudin, E. S., Sharma, S., Abral, H., Asrofi, M., Syafri, E., Sari, N. H., Rafidah, M., Zakaria, S. Z. S., Razman, M. R., Majid, N. A., Ramli, Z., Azmi, A., … Ibrahim, R. (2022). Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. In Polymers (Vol. 14, Issue 5). MDPI. https://doi.org/10.3390/polym14050874

Jee, J. P., Pangeni, R., Jha, S. K., Byun, Y., & Park, J. W. (2019). Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. International Journal of Nanomedicine, 14, 5449–5475. https://doi.org/10.2147/IJN.S213883

Kabir, I. I., Sorrell, C. C., Mofarah, S. S., Yang, W., Yuen, A. C. Y., Nazir, M. T., & Yeoh, G. H. (2021). Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. In Polymer Reviews (Vol. 61, Issue 2, pp. 357–414). Bellwether Publishing, Ltd. https://doi.org/10.1080/15583724.2020.1801726

Kanungo, M., Wang, Y., Hutchinson, N., Kroll, E., Debruine, A., Kumpaty, S., Ren, L., Wu, Y., Hua, X., & Zhang, W. (2021). Development of gelatin‐coated microspheres for novel bioink design. Polymers, 13(19). https://doi.org/10.3390/polym13193339

Lee, C. H., Chang, S. H., Chen, W. J., Hung, K. C., Lin, Y. H., Liu, S. J., Hsieh, M. J., Pang, J. H. S., & Juang, J. H. (2015). Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. Journal of Colloid and Interface Science, 439, 88–97. https://doi.org/10.1016/j.jcis.2014.10.028

Lei, C., Liu, X. R., Chen, Q. B., Li, Y., Zhou, J. L., Zhou, L. Y., & Zou, T. (2021). Hyaluronic acid and albumin based nanoparticles for drug delivery. In Journal of Controlled Release (Vol. 331, pp. 416–433). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2021.01.033

Li, Y., Chen, X., Ji, J., Li, L., & Zhai, G. (2021). Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel. Carbohydrate Polymers, 255. https://doi.org/10.1016/j.carbpol.2020.117393

Losi, P., Briganti, E., Errico, C., Lisella, A., Sanguinetti, E., Chiellini, F., & Soldani, G. (2013). Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia, 9(8), 7814–7821. https://doi.org/10.1016/j.actbio.2013.04.019

Maarof, M., Nadzir, M. M., Mun, L. S., Fauzi, M. B., Chowdhury, S. R., Idrus, R. B. H., & Lokanathan, Y. (2021). Hybrid collagen hydrogel/chondroitin-4-sulphate fortified with dermal fibroblast conditioned medium for skin therapeutic application. Polymers, 13(4), 1–14. https://doi.org/10.3390/polym13040508

Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002

Moradpoor, H., Mohammadi, H., Safaei, M., Mozaffari, H. R., Sharifi, R., Gorji, P., Sulong, A. B., Muhamad, N., & Ebadi, M. (2022). Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. In International Journal of Polymer Science (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/1214734

Naskar, A., & Kim, K. S. (2020). Recent advances in nanomaterial-based wound-healing therapeutics. In Pharmaceutics (Vol. 12, Issue 6). MDPI AG. https://doi.org/10.3390/pharmaceutics12060499

Ogaji, I. J., Nep, E. I., & Audu-Peter, J. D. (2012). Advances in Natural Polymers as Pharmaceutical Excipients. Pharmaceutica Analytica Acta, 03(01). https://doi.org/10.4172/2153-2435.1000146

Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. In Biomedicine and Pharmacotherapy (Vol. 112). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2019.108615

Petitjean, M., García-Zubiri, I. X., & Isasi, J. R. (2021). History of cyclodextrin-based polymers in food and pharmacy: a review. In Environmental Chemistry Letters (Vol. 19, Issue 4, pp. 3465–3476). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-021-01244-5

Pyun, D. G., Choi, H. J., Yoon, H. S., Thambi, T., & Lee, D. S. (2015). Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 135, 699–706. https://doi.org/10.1016/j.colsurfb.2015.08.029

Rao, S. H., Harini, B., Shadamarshan, R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. In International Journal of Biological Macromolecules (Vol. 110, pp. 88–96). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2017.09.029

Reddy, M. S. B., Ponnamma, D., Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural and synthetic biopolymer composite scaffolds. In Polymers (Vol. 13, Issue 7). MDPI AG. https://doi.org/10.3390/polym13071105

Rezvani Ghomi, E., Nourbakhsh, N., Akbari Kenari, M., Zare, M., & Ramakrishna, S. (2021). Collagen-based biomaterials for biomedical applications. In Journal of Biomedical Materials Research - Part B Applied Biomaterials (Vol. 109, Issue 12, pp. 1986–1999). John Wiley and Sons Inc. https://doi.org/10.1002/jbm.b.34881

Riseh, R. S., Vazvani, M. G., Zarandi, M., & Skorik, Y. A. (2022). Alginate-Induced Disease Resistance in Plants. In Polymers (Vol. 14, Issue 4). MDPI. https://doi.org/10.3390/polym14040661

Sanchez Ramirez, D. O., Cruz-Maya, I., Vineis, C., Tonetti, C., Varesano, A., & Guarino, V. (2021). Design of asymmetric nanofibers-membranes based on polyvinyl alcohol and wool-keratin for wound healing applications. Journal of Functional Biomaterials, 12(4). https://doi.org/10.3390/jfb12040076

Sanju, S., Tallapaneni, V., Narukulla, S., Pamu, D., Mude, L., & Karri, V. V. S. R. (2021). Micro and nanoparticles for the delivery of growth factors in diabetic wounds. In Journal of Medical Pharmaceutical and Allied Sciences (Vol. 10, Issue 5, pp. 3552–3559). MEDIC SCIENTIFIC. https://doi.org/10.22270/jmpas.V10I5.1470

Shah, S. A., Sohail, M., Khan, S., Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., & Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. In International Journal of Biological Macromolecules (Vol. 139, pp. 975–993). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2019.08.007

Silva Pereira, R. L., Campina, F. F., Costa, M. do S., Pereira da Cruz, R., Sampaio de Freitas, T., Lucas dos Santos, A. T., Cruz, B. G., Maciel de Sena Júnior, D., Campos Lima, I. K., Xavier, M. R., Rodrigues Teixeira, A. M., Alencar de Menezes, I. R., Quintans-Júnior, L. J., Araújo, A. A. de S., & Melo Coutinho, H. D. (2021). Antibacterial and modulatory activities of β-cyclodextrin complexed with (+)-β-citronellol against multidrug-resistant strains. Microbial Pathogenesis, 156. https://doi.org/10.1016/j.micpath.2021.104928

Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. In Progress in Polymer Science (Vol. 117). Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2021.101395

Wu, S. C., Marston, W., & Armstrong, D. G. (n.d.). Strategies to Prevent and Heal Diabetic Foot Ulcers: A Joint Publication of APMA and SVS SPECIAL COMMUNICATION Wound Care The Role of Advanced Wound-healing Technologies.

Yang, X., Wang, B., Peng, D., Nie, X., Wang, J., Yu, C.-Y., & Wei, H. (2022). Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. Advanced NanoBiomed Research, 2(12), 2200124. https://doi.org/10.1002/anbr.202200124

Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. In Carbohydrate Polymers (Vol. 261). Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2021.117904

Yu, L., & Wei, M. (2021). Biomineralization of collagen-based materials for hard tissue repair. In International Journal of Molecular Sciences (Vol. 22, Issue 2, pp. 1–17). MDPI AG. https://doi.org/10.3390/ijms22020944

Zdunek, A., Pieczywek, P. M., & Cybulska, J. (2021). The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety, 20(1), 1101–1117. https://doi.org/10.1111/1541-4337.12689

Related Images:

Recent Images

Herbal Alternatives for Oral Health:  Mechanistic Exploration with their Market Potential
A Review on Extraction, Identification and Application of Pesticidal Active Phytoderived Metabolites
Determination of Total Dissolved Solids (TDS) of RO Purified Drinking Water Samples in Raipur
Time of the Day Variability in Pit-Building Behavior of Antlion Larvae
A Comprehensive Review of a particular Skin Injury: Pathogenesis, triggers, and current Treatment Options
Enhanced antioxidant activity in Curcuma caesia Roxb. microrhizomes treated with silver nanoparticles
Studies on the Interaction of Imidazolium Ionic Liquids with Human Serum Albumin
Basic and Advanced Logical Concept Derived from Surface Enhanced Infrared Spectroscopy (SEIRS) as Sensing Probe for Analysis of Chemical Species: A Brief Review
Soil Erosion Risk Estimation by using Semi Empirical RUSLE model: A case study of Maniyari Basin, Chhattisgarh
An Estimator of Population Variance Using Multi-Auxiliary Information


Recomonded Articles:

Author(s): Madhu Allalla; Naman Shukla; Sweta Minj; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-5         Access: Open Access Read More

Author(s): Naman Shukla; K. Anil Kumar; Madhu Allalla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-2         Access: Open Access Read More

Author(s): Anil Kumar Verma

DOI: 10.52228/JRUB.2023-35-2-6         Access: Open Access Read More

Author(s): Debashis Sanyal

DOI:         Access: Open Access Read More

Author(s): PR Shende; PR Itankar; SK Prasad

DOI:         Access: Open Access Read More

Author(s): Rajib Bandyopadhyay

DOI:         Access: Open Access Read More

Author(s): Parul Thakur; Ketan Mulchandani

DOI:         Access: Open Access Read More

Author(s): Neeta kumbhare

DOI:         Access: Open Access Read More

Author(s): Satish Patel; Manju singh; Deependra Singh

DOI:         Access: Open Access Read More

Author(s): Harish Bhardwaj; Sulekha Khute; Rajendra Kumar Jangde

DOI: 10.52228/JRUB.2023-36-2-7         Access: Open Access Read More