References:
1.
Ahmed, R., Freed, S. (2021). Virulence of Beauveria
bassiana Balsamo to red palm weevil, Rhynchophorus ferrugineus
(Olivier) (Coleoptera: Curculionidae). Egypt J Biol Pest Control, 31, 77.
https://doi.org/10.1186/s41938-021-00422-5
2.
Arnosti, A., Delalibera, I., Conceschi, M. R.,
D’Alessandro, C. P., Travaglini, R. V., & Camargo-Mathias, M. I. (2019).
Interactions of adjuvants on adhesion and germination of Isaria fumosorosea
on adults of Diaphorina citri. Scientia Agricola, 76(6), 487–493.
https://doi.org/10.1590/1678-992X-2017-0240
3.
Aw, K. M. S., & Hue, S. M. (2017). Mode of
Infection of Metarhizium spp. Fungus and Their Potential as Biological Control
Agents. J Fungi (Basel), 3(2), 30. https://doi.org/10.3390/jof3020030
4.
Ayilara, M. S., Adeleke, B. S., Akinola, S. A.,
Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., … Babalola, O. O. (2023).
[Manuscript in preparation]. Retrieved from
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1040901/full
5.
Baldiviezo, L. V., Nieva, L. B., Pedrini, N.,
& Cardozo, R. M. (2023). Microencapsulation of a Native Strain of the
Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity
against Pyrethroid-Resistant Triatoma infestans to Vector Control of
Chagas Disease in the Argentine Gran Chaco Region. Trop. Med. Infect. Dis., 8,
245. https://doi.org/10.3390/tropicalmed8050245
6.
Bamisile, B. S., Akutse, K. S., Siddiqui, J.
A., & Xu, Y. (2021). Model Application of Entomopathogenic Fungi as
Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for
Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 12,
741804. https://doi.org/10.3389/fpls.2021.741804
7.
Bava, R., Castagna, F., Piras, C., Musolino,
V., Lupia, C., Palma, E., Britti, D., Musella, V. (2022). Entomopathogenic
Fungi for Pests and Predators Control in Beekeeping. Vet Sci, 9(2), 95.
https://doi.org/10.3390/vetsci9020095
8.
Bayman, P., Mariño, Y. A., García-Rodríguez, N.
M., Oduardo-Sierra, O. F., & Rehner, S. A. (2021). Local isolates of
Beauveria bassiana for control of the coffee berry borer Hypothenemus hampei in
Puerto Rico: Virulence, efficacy and persistence. Biological Control, 155,
104533. https://doi.org/10.1016/j.biocontrol.2021.104533
9.
Behie, S. W., & Bidochka, M. J. (2014).
Nutrient transfer in insect-fungal symbioses: Counterbalance in the ecosystem.
Frontiers in Microbiology, 5, 1-12.
10.
Bidochka, M. J., Khachatourians, G. G., &
Rizzo, N. W. (2020). Fungal Insecticides: Mechanisms of Action, Formulation,
Delivery and Uses. In Fungi as Biocontrol Agents: Progress, Problems and
Potential (2nd ed., pp. 269-307). Elsevier.
11.
Bischoff, J. F., & Rehner, S. A. (2016).
The Fungal Tree of Life: From Molecular Systematics to Genome-Scale
Phylogenies. Microbiology Spectrum, 4(6).
https://doi.org/10.1128/microbiolspec.FUNK-0053-2016
12.
Bischoff, J. F., & Rehner, S. A. (2020).
The mycobiome of entomopathogenic fungi: current understanding, open questions,
and prospects for conservation. Insects, 11(9), 615.
13.
Butt, T. M., et al. (2016). Entomopathogenic
Fungi: New Insights into Host–Pathogen Interactions. Advances in Genetics, 94,
307-364. https://doi.org/10.1016/bs.adgen.2016.01.001
14.
Chen, J., Lai, Y., Wang, L., et al. (2017).
CRISPR/Cas9-mediated efficient genome editing via blastospore-based
transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep, 7,
45763. https://doi.org/10.1038/srep45763
15.
de Bekker, C., Beckerson, W. C., & Elya, C.
(2021). Mechanisms behind the Madness: How Do Zombie-Making Fungal
Entomopathogens Affect Host Behavior To Increase Transmission? mBio, 12(5),
e0187221. https://doi.org/10.1128/mBio.01872-21
16.
de Crecy, E., Jaronski, S., Lyons, B., et al.
(2009). Directed evolution of a filamentous fungus for thermotolerance. BMC
Biotechnol, 9, 74. https://doi.org/10.1186/1472-6750-9-74
17.
Dembilio, Ó., Moya, P., Vacas, S., et al.
(2018). Development of an attract-and-infect system to control Rhynchophorus
ferrugineus with the entomopathogenic fungus Beauveria bassiana. Pest Manag
Sci, 74(8), 1861-1869. https://doi.org/10.1002/ps.4888
18.
Duarte, R. T., Gonçalves, K. C., Espinosa, D.
J., et al. (2016). Potential of Entomopathogenic Fungi as Biological Control
Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With
Chemical Insecticides. J Econ Entomol, 109(2), 594-601.
https://doi.org/10.1093/jee/tow008
19.
Gao, Q., Jin, K., Ying, S. H., et al. (2021).
Genomics of entomopathogenic fungi: current status and future prospects.
Critical Reviews in Biotechnology, 41(1), 106-122.
20.
Gindin, G., Levski, S., Glazer, I., et al.
(2006). Evaluation of the entomopathogenic fungi Metarhizium anisopliae and
Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus .
Phytoparasitica, 34, 370–379. https://doi.org/10.1007/BF02981024
21.
Goettel, M. S., Inglis, G. D., Lingg, A. J.,
& Rombach, M. C. (2020). Strategies for Enhancing the Biopesticide
Potential of Entomopathogenic Fungi. Insects, 11(7), 429.
22.
Goulson, D., Nicholls, E., Botías, C., &
Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites,
pesticides, and lack of flowers. Science, 347(6229), 1255957.
23.
Hamdi, F., Fargues, J., Ridray, G., Jeannequin,
B., & Bonato, O. (2011). Compatibility among entomopathogenic hyphocreales
and two beneficial insects used to control Trialeurodes vaporariorum
(Hemiptera: Aleurodidae) in Mediterranean greenhouses. Journal of Invertebrate
Pathology, 108(1), 22-29. https://doi.org/10.1016/j.jip.2011.05.018
24.
Heong, K. L., Cheng, J. A., Escalada, M. M.,
& Mai, V. C. (2019). Insect Pests and Their Management in Agricultural
Systems. In K. L. Heong, J. A. Cheng, M. M. Escalada, & V. C. Mai (Eds.),
Rice Planthoppers: Ecology, Management, Socio Economics, and Policy (pp. 1-28).
Cham: Springer.
25.
Hernández-Domínguez, C., & Guzmán-Franco,
A. W. (2017). Species Diversity and Population Dynamics of Entomopathogenic
Fungal Species in the Genus Metarhizium—a Spatiotemporal Study. Microbial
Ecology, 74(1), 194–206.
26.
Hollingsworth, R. G., Aristizábal, L. F.,
Shriner, S., Mascarin, G. M., Moral, R. de A., & Arthurs, S. P. (2020).
Incorporating Beauveria bassiana Into an Integrated Pest Management Plan for
Coffee Berry Borer in Hawaii. Frontiers in Sustainable Food Systems, 4, 22.
https://doi.org/10.3389/fsufs.2020.00022.
27.
Kryukov, V. Y., & Glupov, V. V. (2023).
Special Issue on “Entomopathogenic Fungi: Ecology, Evolution, Adaptation”: An
Editorial. Microorganisms, 11(6), 1494.
https://doi.org/10.3390/microorganisms11061494
28.
Lei, C. J., Ahmad, R. H. I. R., Halim, N. A.,
et al. (2023). Bioefficacy of an Oil-Emulsion Formulation of Entomopathogenic
Fungus, Metarhizium anisopliae against Adult Red Palm Weevil, Rhynchophorus
ferrugineus. Insects, 14(5), 482. https://doi.org/10.3390/insects14050482
29.
Letourneau, D. K., Jedlicka, J. A., Bothwell,
S. G., & Moreno, C. R. (2011). Effects of natural enemy biodiversity on the
suppression of arthropod herbivores in terrestrial ecosystems. Annual Review of
Ecology, Evolution, and Systematics, 42, 123-143.
30.
Liu, D., Smagghe, G., & Liu, T. X. (2023).
Interactions between Entomopathogenic Fungi and Insects and Prospects with
Glycans. J Fungi (Basel), 9(5), 575. https://doi.org/10.3390/jof9050575
31.
Liu, L., Zhao, X. Y., Tang, Q. B., Lei, C. L.,
& Huang, Q. Y. (2019). The Mechanisms of Social Immunity Against Fungal
Infections in Eusocial Insects. Toxins (Basel), 11(5), 244.
https://doi.org/10.3390/toxins11050244
32.
Lovett, B., & St. Leger, R. J. (2017).
Genetically engineering better fungal biopesticides. Pest Management Science,
74(4), 781-785. https://doi.org/10.1002/ps.4734
33.
Lovett, B., Bilgo, E., Diabate, A., & St.
Leger, R. (2019). A review of progress toward field application of transgenic
mosquitocidal entomopathogenic fungi. Pest Management Science, 22 February
2019. https://doi.org/10.1002/ps.5385
34.
Mantzoukas, S., Kitsiou, F., Natsiopoulos, D.,
& Eliopoulos, P. A. (2022). Entomopathogenic Fungi: Interactions and
Applications. Encyclopedia, 2, 646-656.
https://doi.org/10.3390/encyclopedia2020044
35.
Merghem, A. (2011). Susceptibility of the Red
Palm Weevil, Rhynchophorus ferrugineus (Olivier) to the Green Muscardine
Fungus, Metarhizium anisopliae (Metsch.) in the Laboratory and in Palm Trees
Orchards. Egypt. J. Biol. Pest Control, 21, 179-183.
36.
Meyling, N. V., & Eilenberg, J. (2007).
Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium
anisopliae in temperate agroecosystems: Potential for conservation biological
control. Biological Control, 43(2), 145-155. https://doi.org/10.1016/j.biocontrol.2007.07.007
37.
Mnyone, L. L., Kirby, M. J., Lwetoijera, D. W.,
et al. (2009). Infection of the malaria mosquito, Anopheles gambiae, with two
species of entomopathogenic fungi: effects of concentration, co-formulation,
exposure time and persistence. Malar J, 8, 309. https://doi.org/10.1186/1475-2875-8-309
38.
Muskat, L. C., Görg, L. M., Humbert, P., Gross,
J., Eilenberg, J., & Patel, A. V. (2021). Encapsulation of the
psyllid-pathogenic fungus Pandora sp. nov. inedit. and experimental infection
of target insects. Pest Management Science, 78(4), 1575-1584.
https://doi.org/10.1002/ps.6710
39.
Oerke, E. C., Dehne, H. W., Schönbeck, F.,
& Weber, A. (2006). Crop production and crop protection: Estimated losses
in major food and cash crops. Elsevier.
40.
Ortiz-Urquiza, A., & Keyhani, N. O. (2021).
Action on the surface: Entomopathogenic fungi versus the insect cuticle.
Insects, 12(3), 216. https://doi.org/10.3390/insects12030216
41.
Pimentel, D., & Burgess, M. (2005).
Environmental and economic costs of the application of pesticides primarily in
the United States. Environment, Development and Sustainability, 7(2), 229-252.
42.
Pretty, B., Benton, T. G., Bharucha, Z. P.,
Dicks, L. V., Flora, C. B., & Godfray, H. C. J. (2018). Global assessment
of agricultural system redesign for sustainable intensification. Nature
Sustainability, 1(8), 441-446.
43.
Půža, V., & Tarasco, E. (2023).
Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes.
Microorganisms, 11(1), 163. https://doi.org/10.3390/microorganisms11010163
44.
Quesada-Moraga, E., González-Mas, N.,
Yousef-Yousef, M., et al. (2023). Key role of environmental competence in
successful use of entomopathogenic fungi in microbial pest control. J Pest Sci.
https://doi.org/10.1007/s10340-023-01622-8
45.
Rodríguez-Romero, H., Rodríguez-Peláez, L.,
Reyes-Castro, A., Notario-Rendón, O. T., González-Peréz, M., Reza-Salgado, J.,
… Salazar-Magallón, J. A. (2023). Secondary metabolites of entomopathogens as
biotechnological tools for the biological control of agricultural insect pests.
Retrieved from https://www.intechopen.com/online-first/86943
46.
Rohrlich, C., Merle, I., Mze Hassani, I.,
Verger, M., Zuin, M., Besse, S., Robène, I., Nibouche, S., & Costet, L.
(2018). Variation in physiological host range in three strains of two species
of the entomopathogenic fungus Beauveria. PLoS One, 13(7), e0199199.
https://doi.org/10.1371/journal.pone.0199199
47.
Roy, H. E., Steinkraus, D. C., Eilenberg, J.,
Hajek, A. E., & Pell, J. K. (2006). Bizarre Interactions and Endgames:
Entomopathogenic Fungi and Their Arthropod Hosts. Annual Review of Entomology,
51(1), 331-357.
48.
Sabbahi, R., Hock, V., Azzaoui, K., Saoiabi,
S., & Hammouti, B. (2022). A global perspective of entomopathogens as
microbial biocontrol agents of insect pests. Journal of Agriculture and Food
Research, 10, 100376. https://doi.org/10.1016/j.jafr.2022.100376
49.
Sharma, R., & Sharma, P. (2021). Fungal
entomopathogens: a systematic review. Egypt J Biol Pest Control, 31, 57.
https://doi.org/10.1186/s41938-021-00404-7
50.
Shehzad, M., Tariq, M., Mukhtar, T., et al.
(2021). On the virulence of the entomopathogenic fungi, Beauveria bassiana and
Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth,
Plutella xylostella (L.) (Lepidoptera: Plutellidae). Egypt J Biol Pest Control,
31, 86. https://doi.org/10.1186/s41938-021-00428-z
51.
Skinner, M., Parker, B. L., & Kim, J. S.
(2014). Role of Entomopathogenic Fungi in Integrated Pest Management. In D. P.
Abrol (Ed.), Integrated Pest Management (pp. 169-191). Academic Press. ISBN
9780123985293. https://doi.org/10.1016/B978-0-12-398529-3.00011-7
52.
Sutanto, K. D., Al-Shahwan, I. M., Husain, M.,
Rasool, K. G., Mankin, R. W., & Aldawood, A. S. (2023). Field Evaluation of
Promising Indigenous Entomopathogenic Fungal Isolates against Red Palm Weevil,
Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Journal of Fungi, 9(1),
68. https://doi.org/10.3390/jof9010068
53.
van Lenteren, J. C., Bale, J., Bigler, F.,
Hokkanen, H. M. T., & Loomans, A. J. M. (2018). Assessing risks and
benefits of biological control: the need for a more balanced approach.
BioControl, 63(3), 335-348.
54.
Vega, F. E., & Kaya, H. K. (2012). Insect
Pathology (2nd ed.). Academic Press.
55.
Vu, V. H., Hong, S. I., & Kim, K. (2007).
Selection of entomopathogenic fungi for aphid control. Journal of Bioscience
and Bioengineering, 104(6), 498-505. https://doi.org/10.1263/jbb.104.498 PMID:
18215637
56.
Wang, X., Ding, Y., Zhang, X., & Wang, W.
(2020). Entomopathogenic Fungi: Insight into Host-Microbe Interactions. In G.
Ahmad (Ed.), Microbial Pathogens and Strategies for Combating Them: Science,
Technology and Education (pp. 465-475). Formatex Research Center.
57.
Wang, Z. K., Sun, L. M., Hu, Y., et al. (2021).
The first report of a synergistic entomopathogenic fungus Lecanicillium
muscarium and the potential for combined control of invasive tephritid fruit
flies. Pest Manag Sci, 77(3), 1372-1381. https://doi.org/10.1002/ps.6173
58.
Wu, J., Du, C., Zhang, J., Yang, B.,
Cuthbertson, A. G. S., & Ali, S. (2021). Synthesis of Metarhizium
anisopliae-Chitosan Nanoparticles and Their Pathogenicity against Plutella
xylostella (Linnaeus). Microorganisms, 10(1), 1. https://doi.org/10.3390/microorganisms10010001
PMID: 35056450; PMCID: PMC8781626.
59.
Zhao, H., Lovett, B., & Fang, W. (2016).
Genetically Engineering Entomopathogenic Fungi. Advances in Genetics, 94,
137-163. https://doi.org/10.1016/bs.adgen.2015.11.001 PMID: 27131325.