Abstract View

Author(s): Tarun Kumar Patel

Email(s): tarun_rgh@yahoo.co.in

Address: Department of Biotechnology, Sant Guru Ghasidas Government P.G. College, Kurud, District-Dhamtari (C.G.)
*Corresponding Author: tarun_rgh@yahoo.co.in

Published In:   Volume - 36,      Issue - 2,     Year - 2023

DOI: 10.52228/JRUB.2023-36-2-8  

Insect pests pose significant challenges to agricultural productivity and crop yield worldwide. Conventional pest control methods, such as chemical pesticides, have limitations and adverse environmental effects. Therefore, there is a growing need for sustainable and eco-friendly alternatives in pest management. This review explores the potential of entomopathogenic fungi as a promising biological control agent for insect pests in agriculture. The review begins by providing an overview of entomopathogenic fungi and their significancce. These fungi possess unique mechanisms to infect and kill insect pests. The mode of action involves attachment of fungal spores to the insect's cuticle, followed by penetration, colonization, and release of toxic metabolites within the host. Various factors influence the efficacy of entomopathogenic fungi, including environmental conditions, insect host susceptibility, and formulation/application methods. The benefits of entomopathogenic fungi as biological control agents are discussed, including their compatibility with integrated pest management (IPM) strategies and minimal impact on non-target organisms. However, challenges exist in scaling up their commercial application. The review presents case studies showcasing successful field applications of entomopathogenic fungi in pest management. Future prospects and research directions are identified, emphasizing the importance of continued advancements in understanding the interactions between entomopathogenic fungi and insect pests. Regulatory frameworks and public acceptance are crucial for the widespread adoption of these fungi in agriculture. In conclusion, entomopathogenic fungi offer immense potential as sustainable and effective tools for biological control of insect pests in agriculture. Their ability to target specific pests, compatibility with IPM, and minimal environmental impact make them a viable alternative to chemical pesticides. Further research, collaboration, and implementation are necessary to fully harness the potential of entomopathogenic fungi in integrated pest management strategies.

Cite this article:
Tarun Kumar Patel (2023). Entomopathogenic Fungi: Nature's Secret Weapon Against Agricultural Pests. Journal of Ravishankar University (Part-B: Science), 36(2), pp. 109-125.DOI: https://doi.org/10.52228/JRUB.2023-36-2-8


1.     Ahmed, R., Freed, S. (2021). Virulence of Beauveria bassiana Balsamo to red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Egypt J Biol Pest Control, 31, 77. https://doi.org/10.1186/s41938-021-00422-5

2.     Arnosti, A., Delalibera, I., Conceschi, M. R., D’Alessandro, C. P., Travaglini, R. V., & Camargo-Mathias, M. I. (2019). Interactions of adjuvants on adhesion and germination of Isaria fumosorosea on adults of Diaphorina citri. Scientia Agricola, 76(6), 487–493. https://doi.org/10.1590/1678-992X-2017-0240

3.     Aw, K. M. S., & Hue, S. M. (2017). Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. J Fungi (Basel), 3(2), 30. https://doi.org/10.3390/jof3020030

4.     Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., … Babalola, O. O. (2023). [Manuscript in preparation]. Retrieved from https://www.frontiersin.org/articles/10.3389/fmicb.2023.1040901/full

5.     Baldiviezo, L. V., Nieva, L. B., Pedrini, N., & Cardozo, R. M. (2023). Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region. Trop. Med. Infect. Dis., 8, 245. https://doi.org/10.3390/tropicalmed8050245

6.     Bamisile, B. S., Akutse, K. S., Siddiqui, J. A., & Xu, Y. (2021). Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Frontiers in Plant Science, 12, 741804. https://doi.org/10.3389/fpls.2021.741804

7.     Bava, R., Castagna, F., Piras, C., Musolino, V., Lupia, C., Palma, E., Britti, D., Musella, V. (2022). Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Vet Sci, 9(2), 95. https://doi.org/10.3390/vetsci9020095

8.     Bayman, P., Mariño, Y. A., García-Rodríguez, N. M., Oduardo-Sierra, O. F., & Rehner, S. A. (2021). Local isolates of Beauveria bassiana for control of the coffee berry borer Hypothenemus hampei in Puerto Rico: Virulence, efficacy and persistence. Biological Control, 155, 104533. https://doi.org/10.1016/j.biocontrol.2021.104533

9.     Behie, S. W., & Bidochka, M. J. (2014). Nutrient transfer in insect-fungal symbioses: Counterbalance in the ecosystem. Frontiers in Microbiology, 5, 1-12.

10.  Bidochka, M. J., Khachatourians, G. G., & Rizzo, N. W. (2020). Fungal Insecticides: Mechanisms of Action, Formulation, Delivery and Uses. In Fungi as Biocontrol Agents: Progress, Problems and Potential (2nd ed., pp. 269-307). Elsevier.

11.  Bischoff, J. F., & Rehner, S. A. (2016). The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. Microbiology Spectrum, 4(6). https://doi.org/10.1128/microbiolspec.FUNK-0053-2016

12.  Bischoff, J. F., & Rehner, S. A. (2020). The mycobiome of entomopathogenic fungi: current understanding, open questions, and prospects for conservation. Insects, 11(9), 615.

13.  Butt, T. M., et al. (2016). Entomopathogenic Fungi: New Insights into Host–Pathogen Interactions. Advances in Genetics, 94, 307-364. https://doi.org/10.1016/bs.adgen.2016.01.001

14.  Chen, J., Lai, Y., Wang, L., et al. (2017). CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep, 7, 45763. https://doi.org/10.1038/srep45763

15.  de Bekker, C., Beckerson, W. C., & Elya, C. (2021). Mechanisms behind the Madness: How Do Zombie-Making Fungal Entomopathogens Affect Host Behavior To Increase Transmission? mBio, 12(5), e0187221. https://doi.org/10.1128/mBio.01872-21

16.  de Crecy, E., Jaronski, S., Lyons, B., et al. (2009). Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol, 9, 74. https://doi.org/10.1186/1472-6750-9-74

17.  Dembilio, Ó., Moya, P., Vacas, S., et al. (2018). Development of an attract-and-infect system to control Rhynchophorus ferrugineus with the entomopathogenic fungus Beauveria bassiana. Pest Manag Sci, 74(8), 1861-1869. https://doi.org/10.1002/ps.4888

18.  Duarte, R. T., Gonçalves, K. C., Espinosa, D. J., et al. (2016). Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides. J Econ Entomol, 109(2), 594-601. https://doi.org/10.1093/jee/tow008

19.  Gao, Q., Jin, K., Ying, S. H., et al. (2021). Genomics of entomopathogenic fungi: current status and future prospects. Critical Reviews in Biotechnology, 41(1), 106-122.

20.  Gindin, G., Levski, S., Glazer, I., et al. (2006). Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus . Phytoparasitica, 34, 370–379. https://doi.org/10.1007/BF02981024

21.  Goettel, M. S., Inglis, G. D., Lingg, A. J., & Rombach, M. C. (2020). Strategies for Enhancing the Biopesticide Potential of Entomopathogenic Fungi. Insects, 11(7), 429.

22.  Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957.

23.  Hamdi, F., Fargues, J., Ridray, G., Jeannequin, B., & Bonato, O. (2011). Compatibility among entomopathogenic hyphocreales and two beneficial insects used to control Trialeurodes vaporariorum (Hemiptera: Aleurodidae) in Mediterranean greenhouses. Journal of Invertebrate Pathology, 108(1), 22-29. https://doi.org/10.1016/j.jip.2011.05.018

24.  Heong, K. L., Cheng, J. A., Escalada, M. M., & Mai, V. C. (2019). Insect Pests and Their Management in Agricultural Systems. In K. L. Heong, J. A. Cheng, M. M. Escalada, & V. C. Mai (Eds.), Rice Planthoppers: Ecology, Management, Socio Economics, and Policy (pp. 1-28). Cham: Springer.

25.  Hernández-Domínguez, C., & Guzmán-Franco, A. W. (2017). Species Diversity and Population Dynamics of Entomopathogenic Fungal Species in the Genus Metarhizium—a Spatiotemporal Study. Microbial Ecology, 74(1), 194–206.

26.  Hollingsworth, R. G., Aristizábal, L. F., Shriner, S., Mascarin, G. M., Moral, R. de A., & Arthurs, S. P. (2020). Incorporating Beauveria bassiana Into an Integrated Pest Management Plan for Coffee Berry Borer in Hawaii. Frontiers in Sustainable Food Systems, 4, 22. https://doi.org/10.3389/fsufs.2020.00022.

27.  Kryukov, V. Y., & Glupov, V. V. (2023). Special Issue on “Entomopathogenic Fungi: Ecology, Evolution, Adaptation”: An Editorial. Microorganisms, 11(6), 1494. https://doi.org/10.3390/microorganisms11061494

28.  Lei, C. J., Ahmad, R. H. I. R., Halim, N. A., et al. (2023). Bioefficacy of an Oil-Emulsion Formulation of Entomopathogenic Fungus, Metarhizium anisopliae against Adult Red Palm Weevil, Rhynchophorus ferrugineus. Insects, 14(5), 482. https://doi.org/10.3390/insects14050482

29.  Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., & Moreno, C. R. (2011). Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 42, 123-143.

30.  Liu, D., Smagghe, G., & Liu, T. X. (2023). Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel), 9(5), 575. https://doi.org/10.3390/jof9050575

31.  Liu, L., Zhao, X. Y., Tang, Q. B., Lei, C. L., & Huang, Q. Y. (2019). The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects. Toxins (Basel), 11(5), 244. https://doi.org/10.3390/toxins11050244

32.  Lovett, B., & St. Leger, R. J. (2017). Genetically engineering better fungal biopesticides. Pest Management Science, 74(4), 781-785. https://doi.org/10.1002/ps.4734

33.  Lovett, B., Bilgo, E., Diabate, A., & St. Leger, R. (2019). A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi. Pest Management Science, 22 February 2019. https://doi.org/10.1002/ps.5385

34.  Mantzoukas, S., Kitsiou, F., Natsiopoulos, D., & Eliopoulos, P. A. (2022). Entomopathogenic Fungi: Interactions and Applications. Encyclopedia, 2, 646-656. https://doi.org/10.3390/encyclopedia2020044

35.  Merghem, A. (2011). Susceptibility of the Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) to the Green Muscardine Fungus, Metarhizium anisopliae (Metsch.) in the Laboratory and in Palm Trees Orchards. Egypt. J. Biol. Pest Control, 21, 179-183.

36.  Meyling, N. V., & Eilenberg, J. (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biological Control, 43(2), 145-155. https://doi.org/10.1016/j.biocontrol.2007.07.007

37.  Mnyone, L. L., Kirby, M. J., Lwetoijera, D. W., et al. (2009). Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malar J, 8, 309. https://doi.org/10.1186/1475-2875-8-309

38.  Muskat, L. C., Görg, L. M., Humbert, P., Gross, J., Eilenberg, J., & Patel, A. V. (2021). Encapsulation of the psyllid-pathogenic fungus Pandora sp. nov. inedit. and experimental infection of target insects. Pest Management Science, 78(4), 1575-1584. https://doi.org/10.1002/ps.6710

39.  Oerke, E. C., Dehne, H. W., Schönbeck, F., & Weber, A. (2006). Crop production and crop protection: Estimated losses in major food and cash crops. Elsevier.

40.  Ortiz-Urquiza, A., & Keyhani, N. O. (2021). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 12(3), 216. https://doi.org/10.3390/insects12030216

41.  Pimentel, D., & Burgess, M. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229-252.

42.  Pretty, B., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., & Godfray, H. C. J. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446.

43.  Půža, V., & Tarasco, E. (2023). Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes. Microorganisms, 11(1), 163. https://doi.org/10.3390/microorganisms11010163

44.  Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., et al. (2023). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J Pest Sci. https://doi.org/10.1007/s10340-023-01622-8

45.  Rodríguez-Romero, H., Rodríguez-Peláez, L., Reyes-Castro, A., Notario-Rendón, O. T., González-Peréz, M., Reza-Salgado, J., … Salazar-Magallón, J. A. (2023). Secondary metabolites of entomopathogens as biotechnological tools for the biological control of agricultural insect pests. Retrieved from https://www.intechopen.com/online-first/86943

46.  Rohrlich, C., Merle, I., Mze Hassani, I., Verger, M., Zuin, M., Besse, S., Robène, I., Nibouche, S., & Costet, L. (2018). Variation in physiological host range in three strains of two species of the entomopathogenic fungus Beauveria. PLoS One, 13(7), e0199199. https://doi.org/10.1371/journal.pone.0199199

47.  Roy, H. E., Steinkraus, D. C., Eilenberg, J., Hajek, A. E., & Pell, J. K. (2006). Bizarre Interactions and Endgames: Entomopathogenic Fungi and Their Arthropod Hosts. Annual Review of Entomology, 51(1), 331-357.

48.  Sabbahi, R., Hock, V., Azzaoui, K., Saoiabi, S., & Hammouti, B. (2022). A global perspective of entomopathogens as microbial biocontrol agents of insect pests. Journal of Agriculture and Food Research, 10, 100376. https://doi.org/10.1016/j.jafr.2022.100376

49.  Sharma, R., & Sharma, P. (2021). Fungal entomopathogens: a systematic review. Egypt J Biol Pest Control, 31, 57. https://doi.org/10.1186/s41938-021-00404-7

50.  Shehzad, M., Tariq, M., Mukhtar, T., et al. (2021). On the virulence of the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Egypt J Biol Pest Control, 31, 86. https://doi.org/10.1186/s41938-021-00428-z

51.  Skinner, M., Parker, B. L., & Kim, J. S. (2014). Role of Entomopathogenic Fungi in Integrated Pest Management. In D. P. Abrol (Ed.), Integrated Pest Management (pp. 169-191). Academic Press. ISBN 9780123985293. https://doi.org/10.1016/B978-0-12-398529-3.00011-7

52.  Sutanto, K. D., Al-Shahwan, I. M., Husain, M., Rasool, K. G., Mankin, R. W., & Aldawood, A. S. (2023). Field Evaluation of Promising Indigenous Entomopathogenic Fungal Isolates against Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Journal of Fungi, 9(1), 68. https://doi.org/10.3390/jof9010068

53.  van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T., & Loomans, A. J. M. (2018). Assessing risks and benefits of biological control: the need for a more balanced approach. BioControl, 63(3), 335-348.

54.  Vega, F. E., & Kaya, H. K. (2012). Insect Pathology (2nd ed.). Academic Press.

55.  Vu, V. H., Hong, S. I., & Kim, K. (2007). Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering, 104(6), 498-505. https://doi.org/10.1263/jbb.104.498 PMID: 18215637

56.  Wang, X., Ding, Y., Zhang, X., & Wang, W. (2020). Entomopathogenic Fungi: Insight into Host-Microbe Interactions. In G. Ahmad (Ed.), Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education (pp. 465-475). Formatex Research Center.

57.  Wang, Z. K., Sun, L. M., Hu, Y., et al. (2021). The first report of a synergistic entomopathogenic fungus Lecanicillium muscarium and the potential for combined control of invasive tephritid fruit flies. Pest Manag Sci, 77(3), 1372-1381. https://doi.org/10.1002/ps.6173

58.  Wu, J., Du, C., Zhang, J., Yang, B., Cuthbertson, A. G. S., & Ali, S. (2021). Synthesis of Metarhizium anisopliae-Chitosan Nanoparticles and Their Pathogenicity against Plutella xylostella (Linnaeus). Microorganisms, 10(1), 1. https://doi.org/10.3390/microorganisms10010001 PMID: 35056450; PMCID: PMC8781626.

59.  Zhao, H., Lovett, B., & Fang, W. (2016). Genetically Engineering Entomopathogenic Fungi. Advances in Genetics, 94, 137-163. https://doi.org/10.1016/bs.adgen.2015.11.001 PMID: 27131325.

Related Images:

Recent Images

Herbal Alternatives for Oral Health:  Mechanistic Exploration with their Market Potential
Time of the Day Variability in Pit-Building Behavior of Antlion Larvae
A Comprehensive Review of a particular Skin Injury: Pathogenesis, triggers, and current Treatment Options
Enhanced antioxidant activity in Curcuma caesia Roxb. microrhizomes treated with silver nanoparticles
Studies on the Interaction of Imidazolium Ionic Liquids with Human Serum Albumin
Basic and Advanced Logical Concept Derived from Surface Enhanced Infrared Spectroscopy (SEIRS) as Sensing Probe for Analysis of Chemical Species: A Brief Review
Soil Erosion Risk Estimation by using Semi Empirical RUSLE model: A case study of Maniyari Basin, Chhattisgarh
An Estimator of Population Variance Using Multi-Auxiliary Information
Microemulsion as Novel Drug Delivery for Fungal Eye Infection
Potential of Bioactive Compounds for Atopic Dermatitis


Recomonded Articles:

Author(s): Deepak Kumar Sahu; Joyce Rai; Chhaya Bhatt; Manish K. Rai*; Jyoti Goswami; Ajay Kumar Sahu; Thakur Vikram Singh; Mamta Nirmala; Kalpana Wani and Prashant Mundeja

DOI: 10.52228/JRUB.2018-31-1-1         Access: Open Access Read More

Author(s): Chhaya Bhatt*; Deepak Kumar Sahua; Thakur Vikram Singh; Kalpana Wani; Jyoti Goswami; Ajay Kumar Sahu; Harshita Sharma; Geetanjali Deshlehre; Manish Kumar Rai*; Joyce Rai.

DOI: 10.52228/JRUB.2020-33-1-2         Access: Open Access Read More

Author(s): Surendra G Gattani; Ravina Shete; Sandeep Ambore

DOI:         Access: Open Access Read More

Author(s): S. Bera; K. Thakur; P. Vyas; .M.Thakur; A. Shrivastava

DOI: 10.52228/JRUB.2021-34-1-3         Access: Open Access Read More

Author(s): Naman Shukla; K. Anil Kumar; Madhu Allalla; Sanjay Tiwari

DOI: 10.52228/JRUB.2022-35-1-2         Access: Open Access Read More

Author(s): Swarnlata Saraf; Shailendra Saraf

DOI:         Access: Open Access Read More

Author(s): Raisa Khatoon; Prashant Mundeja; Mamta Nirmal; Vindhiya Patel; Kalpana Wani; Ajay Kumar Sahu; Deepak Kumar Sahu; Manish Kumar Rai; Joyce Rai; Pushpy Michael

DOI: 10.52228/JRUB.2017-30-1-6         Access: Open Access Read More

Author(s): Kalpana Wani; Prashant Mundeja; Mamta Nirmal; Vindhiya Patel; Raisa Khatoon; Ajay Kumar Sahu; Deepak Kumar Sahu; Manish Kumar Rai; Joyce Rai; Pushpy Michael

DOI: 10.52228/JRUB.2017-30-1-8         Access: Open Access Read More

Author(s): B.K. Senapatia;Arti Parganihab;A.K. Patib;P.K. Panigrahic

DOI:         Access: Open Access Read More

Author(s): Narendra K. Garg; A.K. Bansal

DOI:         Access: Open Access Read More

Author(s): B K Senapati; P K Panigrahi

DOI:         Access: Open Access Read More

Author(s): Rajib Bandyopadhyay

DOI:         Access: Open Access Read More