References
Frederica
Perera, (2018). Pollution from Fossil-Fuel Combustion is the Leading
Environmental Threat to Global Pediatric Health and Equity: Solutions Exist,
Int. J. Environ. Res. Public Health, 15(1):16.
IEA. World energy outlook (2017).
http://www.iea.org/weo, 2017.
Kiran
Ranabhat, et al. (2016). An introduction to solar cell technology, Journal of
Applied Engineering Science, 14(2016)4, 405, 481 – 491.
Martin
A. Green, et al. (2014). Solar cell efficiency tables (version 44),
Progress In Photovoltaics: Research and Applications Prog. Photovolt: Res.
Appl. 22:701–710.
R. G. Nrel, AUGUST (2010)
Renewable Energy Data Book, 2010, pp. 1–132. August 2010.
Bagher,
A, M; et al. (2015). Types of Solar Cells and Application American Journal of
Optics and Photonics. Volume
3, Issue 5, October 2015, Pages: 94-113.
Sanjay
Tiwari, J. V. Yakhmi, Sue Carter and J. Campbell Scott, 2017, Handbook of Ecomaterials, “Optimization of Bulk Heterojunction Organic
Photovoltaic Devices”, published by Nature Springer, pp 1103-1138.
Sanjay
Tiwari, J. V. Yakhmi, Sue Carter and J. Campbell Scott, 2017, “Advances in
polymer based photovoltaic cells: Review of pioneering Materials, Design and
Device Physics”, Handbook of Ecomaterials,
published by Nature Springer.
DOIhttps://doi.org/10.1007/978-3-319-48281-1_59-1, Online
ISBN978-3-319-48281-1.
Kojima,
et al. (2006). Novel photoelectrochemical cell with mesoscopic electrodes
sensitized by lead-halide compounds (2). ECS Meeting Abstracts, Volume
MA2007-02, B8 - Next Generation
Photovoltaics and Photoelectrochemistry
Kojima,
et al. (2009). Organometal halide perovskites as visible-light sensitizers for
photovoltaic cells, J. Am. Chem. Soc., vol. 131, pp. 6050–6051.
Zho, et al. (2014).
Interface engineering of highly efficient provskite solar cells, Science (80),
vol. 345.
Kai Wang, et al. (2016). Inverted organic photovoltaic cells, Chemical
Society Review, 45, 2937-2975
Shaheen, S. E; et al.
(2001). 2.5% Efficient organic plastic solar cells, Appl. Phys. Lett. 78,
841 (2001).
Green, M. A. et al. (2011).
Solar cell efficiency tables (version 37), Prog Photovolt Res Appl, https://doi.org/10.1002/pip.1088.
Hou, J. et al. (2008). J.
Am. Chem. Soc.130, 48, 16144–16145.
Waldauf,
C. et al. (2006). Highly efficient inverted organic photovoltaics using
solution based titanium oxide as electron selective contact. Appl Phys Lett. 89,
233517.
Krebs,
F.C; (2008). Air stable polyer photovoltaics based on a process free from
vacuum steps and fullerenes. Solar Energy Mater Solar Cells Vol. 92, No.
7, 2008, pp. 715-726. doi:10.1016/j.solmat.2008.01.013.
Zhou,
Y; et al. (2012). A universal method to produce low work function electrodes
for organic electronics, Science 2012 Apr 20; 336(6079): 327-32. doi: 10.1126/science.1218829.
White,
M. S; et al. (2006). Inverted bulk heterojunction organic photovoltaic device
using a solution-derived ZnO underlayer, Appl. Phys. Lett. 89,
143517.
Radzimska,
A. K; et al. (2014). Zinc Oxide from Synthesis to Application: A Review”,
Materials, Materials, 7(4), 2833-2881.