Abstract View

Author(s): Richa Tembekar, Kallol K. Ghosh, Angel Minj, Abhishek Katendra

Email(s): kallolkghosh@gmail.com

Address: School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India.
*Corresponding author: Kallol K. Ghosh (kallolkghosh@gmail.com)

Published In:   Volume - 37,      Issue - 2,     Year - 2024

DOI: 10.52228/JRUB.2024-37-2-15  

ABSTRACT:
Novel methods for management of environmental quality is directly proportional to the growth of the society. This paper reviews the advanced developments in the synthesis methods, surface modifications and applications of magnetic nanoparticles (MNPs) in environmental applications such as wastewater treatment and others. Surface modifications of magnetic nanoparticles with various inorganic, organic and biomolecules such as silicon dioxide, surfactants, metals etc. enhances the properties of the nanoparticles. The present review access the use of MNPs in removing the organic and inorganic contaminants present in the water bodies. Such methods are cost-friendly, eco-friendly, sustainable and easy to access as compared to other methods or techniques. Various organic and inorganic contaminants such as dyes, heavy toxic metals, pesticides, insecticides, pharmaceuticals etc. can be adsorbed or degraded by MNPs with high removal efficiency upto >95% and recycling upto 5 cycles with a minimum time span of 15 to 25 min. The novelty of the work on surface modified magnetic nanoparticles for wastewater remediation lies in several aspects such as enhanced adsorption affinities for particular contaminants, diverse functionalizations that enables targeting wide range of contaminants, synergic effects can enhance overall remediation and magnetic recovery provides access of easy separation and minimizing waste. The need for removal of such contaminants are necessary to reduce the harmful effects on plants, human as well as to aquatic beings.

Cite this article:
Tembekar, Ghosh, Minj and Katendra (2024). Surface Modified Magnetic Nanoparticles as an Efficient Material for Wastewater Remediation: A Review. Journal of Ravishankar University (Part-B: Science), 37(2), pp. 206-240. DOI:DOI: https://doi.org/10.52228/JRUB.2024-37-2-15


REFERENCES

Abba, M., Takahashi, S.M. and Kim, C. (2012). Facile sonochemical synthesis of high moment magnetite (Fe3O4) nanocube. J. Nanopart. Res., 15: 1354.

Abdullaera, Z., Omurzak, E., Iwamoto, C., Ganpathy, H.S., Sulaimankhulova, S., Liang, C. and Mashimo, T. (2012). Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid. Carbon, 50: 1776-1785.

Ahmad, S., Ali Khan, M.M. and Mohammad, F. (2018). ACS Omega, 39378-9387.

Ahmad, F., Ashraf, N., Ashraf, T., Zhou, R.B. and Yin, C. (2019). Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. and Biotechnol., 103: 2913-2935.

Ahmed, M.A, Ali, S.M., Dek, S.I.E., Galal, A. (2013). Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng: B, 178: 744-751.

Akbari, A., Sabouri, Z., Hosseini, H.A., Hashemzadeh, A., Khatami, M. and Darroudi, M. (2020). Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun., 115: 107867.

Alagiri, M., Muthamizhchelvan, C. and  Ponnusamy, S. (2011). Structural and magnetic properties of iron, cobalt and nickel nanoparticles. Synth. Met., 161: 1776-1780.

Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater., 305: 12–15.

Ali, I., Peng, C., Naz, I. and Amjed, M.A. (2019). Water purification using magnetic  Nanomaterials: an overview. Magnetic Nanostructures: Environ. Agri. Applications, 51: 161-179.

Ali, I., Peng, C., Naz, I., Khan, Z.M., Sultan, M., Islam, T. and Abbasi, I.A. (2017). Phytogenic magnetic nanoparticles  for wastewater treatment: A review. RSC Adv., 7: 40158–40178.

Amiri, S. and Shokrollahi, H. (2013). The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C, 33: 1-8.

Andrade, A..L., Souza, D.M., Pereira, M., Fabris, J. and Domingues, R. (2009). Magnetically induced heating by iron oxide nanoparticles dispersed in liquids of different viscosities. Ceram. Int., 55: 420-424.

Arvand, M. and Hemmati, S. (2017). Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuators B: Chem., 238: 346-356.

Atta, A.M., Moustafa, Y.M., Lohedan, H.A., Ezzat, A.O. and Hashem, A.I. (2020). Methylene blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly(ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2- methyl propane sulfonate-co-vinylpyrrolidone. ACS Omega, 5(6): 2829-2842.

Aydin, S., Beduk, F., Ulvi, A. and Aydin, M.E. (2021). Simple and effective removal of psychiatric pharmaceuticals from wastewater treatment plant effluents by magnetite red mud nanoparticles. Sci. Total Environ., 784: 147174.

Bai, L., Du, Y., Peng, J, Liu, Y., Wang, Y., Yang, Y. and Wang, C. (2014). Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. J. Mater. Chem. B, 2: 4080-4088.

Banerjee, S., Benjwal, P., Singh, M. and Kar, K.K. (2018). Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Applied Surf. Sci., 439: 560- 568.

Bao, S., Yang, W., Wang, Y., Yu, Y. and Sun, Y. (2020). One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd (II) and Pb (II) removal from aqueous solution. J. Hazard Mater., 381: 120914.

Bao, Y., Wen, T., Cristina, A., Samia, S., Khandhar, A. and Krishnan, K.M. (2016). Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci., 51: 513-553.

Behestkhoo, N., Kouhbanani, M.A., Savardashtaki, A., Amani, A.M. and Taghizadeh, S. (2018). Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys A, 124: 1-7.

Berger, R., Kliava, J., Daubric, H. and Estournes, C. (2001). Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles. J. Magn. Magn. Mater., 234: 535-544.

Bradley, M.J., Biacchi, A.J. and Schaak, R.E. (2013). Chemical Transformation of Pt–Fe3O4 Colloidal Hybrid Nanoparticles into PtPb–Fe3O4 and Pt3Sn–Fe3O4 Heterodimers and (PtPb–Fe3O4)n Nanoflowers. Chem. Mater., 25: 1886-1892.

Bui, T.Q., Ton, S.N., Duong, A. and Tran, H.T. (2018). Dependence of magnetic responsiveness on particle size of magnetite nanoparticles synthesised by co-precipitation method and solvothermal method. J. Sci: Adv. Mater. Devices, 3: 107-112.

Bujnakova, Z., Zorkovska, A. and Kovac, J. (2017). Mechanochemical Preparation and Magnetic Properties of Fe₃O₄/ZnS Nanocomposite. Acta Phys. Pol A, 131: 1120-1122.

Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R., Colvin, V.L. and Yu, W.W. (2012). Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol., 27: 47-56.

Carvaeho, J., Medeiros, S., Morales, M., Dantas, A. and Carrico, A. (2013). Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci., 275: 84-87.

Chen, F., Xie, S., Huang, X. and Qiu, X. (2017). Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogenous fenton-like catalyst for degradation of organic pollutants with H2O2. J. Hazard. Mater., 322: 152-162.

Chen, H., Li, Y., Wu, H., Sun, N. and Deng, C. (2019). Smart hydrophilic modification of magnetic mesoporous silica with zwitterionic L-cysteine for endogenous glycopeptides recognition. ACS Sustain. Chem. Eng., 7: 2844-285.

Chen, J. and  Zhu, X. (2016). Magnetic solid phase extraction using ionic liquid-coated core–shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples. Food Chem., 200: 10-15

Chen, M. and Nikles, D.E. (2002). Synthesis, Self-Assembly, and Magnetic Properties of FexCoyPt100-x-y Nanoparticles. Nano Lett., 2: 211-214.

Cheng, Y., Liu, Y., Huang, J., Li, K., Xian, Y., Zhang, W. and Jin, L. (2009). Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposites for rapid detection of coliforms. Electrochimic. Acta, 54: 2588-2594.

Chlebowski, R.T. (1979). Adriamycin (doxorubicin) cardiotoxicity: a review. West. J. Med., 131: 364–368.

Chorny, M., Polyak, B., Alferiev, I.S., Walsh, K., Friedman, G. and Levy, R.J. (2007). Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB Jl, 21: 2510– 2519.Choudhury, S.R. and Yanful, E.K. (2013). Kinetics of cadmium (II) uptake by mixed maghemite-magnetite nanoparticles. J. Environ. Manage., 123:  642-651.

Chuiprasert, J., Boontanon, N., Polprasert, C., Ramungul, N., Karawek, A. and Boontanon, S.K. (2024). Ciprofloxacin Electrochemical Sensor Using Copper−Iron MixedMetal Oxides Nanoparticles/Reduced Graphene Oxide Composite. ACS Omega, 9: 23172-23183.

Cole, A.J., David , A.E., Wang, J., Galban, C.J. and Yang V.C. (2011). Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 32: 6291-6301.

Cole, A.J., Yang, V.C. and David, A.E. (2011). Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends biotechnol., 29: 323-332.

Cruz, B.D., Madkour, M., Amin, M.O. and Hetlani, E.A. (2020). Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater. Chem. Phys., 240: 122109.

Cui, C., He, M., Chen, B. and Hu, B. (2014). Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr (III) and Cr (VI). Anal. Methods, 6: 8577-8583.

Cui, G., Sun, J., Li, H., Liu, X., Liu, Y., Tian, Y. and Yan, S. (2016). Synthesis and characterization of magnetic elongated hollow mesoporous silica nanocapsules with silver nanoparticles. J. Mater. Chem. A, 4: 1771-1783.

Cui, Y.R., Hong, C., Zhou, Y.L., Li. Y., Zhang, X.X. and Gao, X.M. (2011). Synthesis of orientedly bioconjugated core/shell Fe3O4@ Au magnetic nanoparticles for cell separation. Talanta, 85: 1246-1252.

Das, C., Sen, S., Singh, T., Ghosh, T., Paul, S.S., Kim, T.W., Jeon, S., Maiti, D.K., Im, J. and Biswas, G. (2020). Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials, 10(8): 1-19.

Djebbi, M.A., Allagui, L., Ayachi, M.S., Boubakri, S., Renault, N.J., Namour, P. and Amara, A.B.H. (2022). Zero valent iron nanoparticles supported on Biomass-Derived Porous Carbon for Simultaneous Detection of Cd2+ and  Pb2+. ACS Appl. Nano Mater., 5: 546-558

Du, J., Zhang. T., Xing, J.L. and Xu, C.L. (2017). Hierarchical porous Fe3O4/Co3S4 nanosheets as an efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A, 5: 9210-9216.

Duan, L., Du, X., Zhao, H., Sun, Y. and Liu, W. (2020). Sensitive and selective sensing system of metallothioneins based on carbon quantum dots and gold nanoparticles. Anal. Chim. Acta., 1125: 177-186.

Đurđić, S. Vlahović, F. Ognjanović, M. Gemeiner,  P.,  Sarakhman,  O., Stanković, V. Mutić,  J., Stanković,  D. and  Švorc,   L. (2024). Nano-size cobalt-doped cerium oxide particles embedded  into graphitic carbon nitride for enhanced electrochemical sensing of insecticide fenitrothion. Sci. Total Environ., 909: 168483.

Fall, B., Sall,  D.D. Hémadi, M.Karim, A., Diaw, D. Fall, M. and Thomas, S. (2023). Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by   molybdenum disulfide and decorated with nickel nanoparticles(GCE/CNT/MoS2/NiNPs) Sens. Actuators Rep., 5: 100136.

Fatimah, I., Pratiwi, E.Z. and Wicaksono, W.P. (2020). Synthesis of magnetic nanoparticles using parkia speciosa hassk pod extract and photocatalytic activity for Bromophenol blue degradation. Egypt. J. Aquatic Res., 46: 35-40.

Ferrag, C., Noroozifar, M. and Kerman, K. (2023). Ultralight 3D Graphene Oxide Aerogel Decorated with Pd–Fe Nanoparticles for the Simultaneous Detection of Eight Biomolecules. ACS Appl. Mater Interfaces, 15, 23:  27502-27514.

Franzel, L., Bertino, M.F., Huba, Z.J. and Carpenter, E.E. (2012). Synthesis of magnetic nanoparticles by pulsed laser ablation. Appl. Surf. Sci., 261: 332-336.

Gao, S., Zhang, W., Zhou, H. and Chen, D. (2018). Magnetic composite Fe3O4/CeO2 for adsorption of azo dye. J. Rare Earths, 36(9): 986-993.

Garcia, J.A.F., Alavarse, A.C., Maldonado, A.C.M., Cordova, A.T., Ibarra, M.R. and Goya, G.F. (2020). Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS Omega, 5(41): 26357-26364.

Gautam, K. and Tiwari, I. (2020). Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere, 245: 125553.

Gill, C.S., Price, B.A. and Jones, C.W. (2007). Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J. Catal., 251: 145-152.

Granata, C., Russo, R., Esposito, E., Vettoliere, A., Russo, M., Musino, A., Peddis, D. and  Fiorani, D. (2013). Magnetic properties of iron oxide nanoparticles investigated by nanoSQUIDs. The Eur. Phys J. B, 86: 1-5.

Gu, H., Xu, K., Xu, C. and Xu, B. (2006). Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Commun., 6: 941-949.

Guo, W., Fu, Z., Zhang, Z., Wang, H., Liu, S., Feng, W., Zhao, X. and Giesy, J.P. (2020). Synthesis of Fe3O4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb(V) removal from water.  Sci. Total Environ., 710: 136302.

Hammad, A.B.A., Nahwary, A.M.E., Hemdan, B.A. and Abia, A.L.K. (2020). Nanoceramics and novel functionalized silicate-based magnetic nanocomposites as substitutional disinfectants for water and wastewater purification. Environ. Sci. Pollut. Res., 27: 26668-26680.

Harkness, K.M., Cliffel, D.E. and Mclean, J.A. (2010). Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst, 135: 868-874.

Hasanpour, A., Mozaffai, M. and Amighian, J. (2007). Preparation of Bi–Fe3O4 nanocomposite through reduction of Bi2O3 with Fe via high-energy ball milling. Phys. B: Condens Matter, 387: 298-301.

Hasanzadeh, M., Karimzadeh, A. and Shadjou, N. (2016). Synthesis, electrodeposition, characterization and application as an electrochemical sensor towards determination of some amino acids at physiological pH. Mater. Sci. and Eng.: C, 68: 814-830.

Hasanzadeh, M., Shadjou, N. and Guardia, M.D. (2015). Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Anal. Chem., 72: 1-9.

He, Q., Liu, J., Liang, J., Liu, X., Tuo, D. and Li, W. (2018). Chemically surface tunable solubility parameter for controllable drug delivery-an example and perspective from hollow PAA-coated magnetite nanoparticles with R6G model drug. Materials, 11: 247–263.

He, X., Liu, Q. and Xu, Z. (2020). Treatment of oily wastewaters using magnetic Janus nanoparticles of asymmetric surface wettability. J. Colloid Interface Sci., 568: 207-220.

Heidari, A., Mir, N. and Nikkaran, A.R. (2016). Phenylalanine removal from water by Fe3O4 nanoparticles functionalized with two different surfactants. J. Nanostruct., 6: 199-206.

Hong, R.Y., Pan, T.T., Han, Y.P., Li, H.Z., Ding, J. and Han, S. (2007). Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids. J. Magn. Magn. Mater., 310: 37-47.

Huang, L., Luo, F., Chen, Z., Megharaj, M. and Naidu, R. (2015). Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 137: 154-159.

Huang, Y. and Keller, A.A. (2015). EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res., 80: 159-168.

Huang, Q., Liu, Y., Zhang, C., Zhang, Z., Liu, F. and Peng, J. (2020). Au quantum dot/ nickel Tetraminophthalocyanaine− GrapheneOxide-Based Photoelectrochemical Microsensor for Ultrasensitive Epinephrine Detection. ACS Omega, 5: 8423-8431.

Huang, Y. and Keller, A. A. (2013). Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustainable Chem. Eng., 1, 7: 731-736.

Hyeon, T. (2003). Chemical synthesis of magnetic nanoparticles. Chem. Comm., 8: 927-934.

Jadhav, V., Chikode, P., Nikam, G. and Sabale, S. (2016). Polyol synthesis and characterization of ZnO@CoFe2O4 MNP’s to study the photodegradation rate of azo and diphenyl type dye. Mater. Today: Proc., 3: 4121-4127.

Jiaqi, Z., Yimin, D., Danyang, L., Shergyun, W., Liling, Z. and Yi, Z. (2019). Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids and Surf. A: Physiochem. Eng. Asp., 572: 58-66.

Jin, Y., Liu, F., Shan, C., Tong, M. and Hou, Y. (2014). Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res., 50: 124-134.

Joshi, N., Filip, J., Coker, V.S., Sadhukhan, J., Safarik, I., Bagshaw, H. and Lloyd, J.R. (2018). Microbial reduction of natural Fe (III) minerals; towards the sustainable production of functional magnetic nanoparticles. Front. Environl. Sci., 127: 556-578.

Jouyandeh, M., Paran, S.M.R., Shabanian, M., Ghiyasi, S., Vahabi, H., Badawi, M., Formela, K.,  Puglia, D. and Saeb, M.R. (2018). Curing behavior of epoxy/Fe3O4 nanocomposite: A comparision between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan /imide/phenylalanine-modified nanofillers. Prog. Organic Coatings, 123: 10-19.

Jung, J.H. and Shinkai, S. (2011). Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev., 40: 4464-4474.

Katepetch, C. and Rujiravanit, R. (2011). Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr. Polym., 86: 162-170.

Khan. S., Naushad, M., Gheethi, A.A. and Iqbal, J. (2021). Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. J. Environ. Chem. Eng., 9(5): 106160.

Kheilkordi, Z., Ziarani, G.M., Mohajer, F., Badiei, A. and Sillanpaa, M. (2022). Recent advances in the application of magnetic bio-polymers as a catalyst in multi component reactions. RSC Adv., 12: 12672-12701.

Khodadadi, M., Musawi, T.J.A., Kamani, H., Silva, M.F., Panahi, A.H. (2020). The practical  utility of the synthesis FeNi3@ SiO2@ TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation. Chemosphere, 239: 124723.

Kim, D.H., Vitol, E.A., Liu, J., Balasubramanian, S., Gosztola, D.J., Cohen, E.E., Novosad, V. and Rozhkova, E.A. (2013). Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir, 29: 7425–7432.

Koventhan, C., Shanmugam, R. and Chen, S.M. (2023). Development of highly sensitive electrochemical   sensor for antipsychotic drug perphenazine using perovskite structured lanthanum cobalt oxide nanoparticles wrapped graphitic carbon nitride nanocomposites. Electrochim. Acta, 467: 143096.

Kreissel, P. and Holm, W. (2021). Frequency-dependent magnetic susceptibility of magnetic nanoparticles in a polymer solution: a simulation study. Soft Matter., 17: 174-183.

Kroll, E., Winnik, F.M. and Ziolo, R.F. (1996). In Situ Preparation of Nanocrystalline γ-Fe2O3 in Iron(II) Cross-Linked Alginate Gels. Chem. Mater, 8: 1594–1596.

Kumar, P.K., Krishna, S.V., Verma, K, Pooja, K., Bhagawan, D. and Himabindu, V. (2018). Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. S. Afr. J. Cheml. Eng., 25: 133-146.

Kumari, M. and Gupta, S.K. (2020). A novel process of adsorption cum  enhanced coagulation flocculation spiked with magnetic  nanoadsorbents  for  the removal of aromatic and hydrophobic fraction of natural  organic  matter along with turbidity from drinking water. J. Clean Prod., 244: 118899.

Kurlyandskaya, G.V., Beitia, I.M., Beketov, I.V., Medvedev, A.I., Larranaga, A., Safronov, A.P. and Bhagat, S.M.  (2014). Structure, magnetic and microwave properties of FeNi nanoparticles obtained by electric explosion of wire. J. Alloys Compd., 615: 231-235.

Li, J., Gong, A., Li, F., Qiu, L., Zheng, W., Gao, G., Liu, Y. and Li, J. (2018). Synthesis and characterization of magnetic mesoporous Fe3O4@ mSiO 2–DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Adv., 8: 39149-39161.

Li, J., Guo, L.T., Shangguan, E., Yue, M.Z., Xu, M., Wang, D., Chang, Z.R. and Li, Q.M. (2017). Synthesis of novel spherical Fe3O4@ Ni3S2 composite as improved anode material for rechargeable nickel-iron batteries. Electrochim. Acta., 240: 456-465.

Li, W., Ma, Y., Guo, Z., Xing, R. and Liu, Z. (2020). Efficient screening of glycan-specific aptamers using a glycosylated peptide as a scaffold. Anal. Chem., 93: 956-963.

Li, Z., Xu, S., Xiao, G., Qian, L. and Song, Y. (2019). Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron. J. Environ. Manag., 244: 33-39.

Li, Z., Xu, S. Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron. J. Environ. Manage., 244: 33-39.

Lin, X.M. and Samia, A.C. (2006). Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater., 305: 100-109.

Liu, Y., Zhang, B. and Yan, B. (2011). Enabling anticancer therapeutics by nanoparticle carriers: the delivery of Paclitaxel. Int. J. Mol. Sci., 12: 4395–4413.

Low, L.E., Tey, B.T., Oong, B.H. and Tang, S.Y. (2018). A facile and rapid sonochemical synthesis of monodispersed Fe3O4@cellulose nanocrystals nanocomposites without inert gas protection. Asia Pacific J. Chem. Eng., 13: 1-16.

Lu, T., Qi, D., Zhang, D., Fu, K., Li, Y. and Zhao, H. (2020). Fabrication of recyclable multi-responsive magnetic nanoparticles for emulsified oil-water separation. J. Clean. Prod., 255: 120293.

Luo, S., Zheng, X. and Cheng, J.P. (2008). Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. Chem. Comm., 44: 5719-5721.

Lyon, J.L., Fleming, D.A., Stone, M.B., Schiffer, P. and Williams, M.E. (2004). Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett., 4: 719–723.

Ma, Z., Shan, C., Liang, J. and Tong, M. (2018). Efficient adsorption of Selenium (IV) from water by hematite modified magnetic nanoparticles. Chemosphere, 193: 134-141.

Macdonald, J.E. and Veinot,  J.G.C. (2008). Removal of residual metal catalysts with Iron/ iron oxide nanoparticles from coordinating environments. Langmuir, 24: 7169-7177.

Mahmoudi, M., Simchi, A., Milawi, A.S. and Stroeve, P. (2009). Cell toxicity of superparamagnetic iron oxide nanoparticles. J. of Colloid Interface Sci., 336: 510-518.

Maiti, A. (2020). Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Trans., 49: 11430-11450.

Majidi, S., Sehrig, F.Z., Farkhani, S.M., Goloujeh, M.S. and Akbarzadeh, A. (2016). Current method for synthesis of magnetic nanoparticles. Nanomed. Biotechnol., 44: 722–734.

Maleki, B. and Esmaeili, H. (2023). Application of Fe3O4/SiO2@ZnO magnetic composites as a recyclable heterogeneous nanocatalyst for biodiesel production from waste cooking oil: Response surface methodology. Ceram. Int., 49: 11452-11463.

Maltas, E., Ozmen, M., Vural, H.C., Yildiz, S. and Ersoz, M. (2011). Immobilization of albumin on magnetite nanoparticles. Mater. Lett., 65: 3499-3501.

Marcus, M., Smith, A., Maswadeh, A., Shemesh, Z., Zak, I., Motiei, M., Schori, H., Margel, S., Sharoni, A. and Shefi, O. (2018). Magnetic targeting of growth factors using iron oxide nanoparticles. Nanomaterials, 8: 707-724.

Mcbain, S.C., Yiu, H.H.P., El. Haj, A. and Dobson, J. (2007). Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem., 17: 2561-2565.

Mdlovu, N.V., Lin, K.S., Mavuso, F.A. and Weng, M.T. (2020). Preparation, characterization and in-vitro studies of doxorubicin-encapsulated silica coated iron oxide nanocomposites on liver cancer cells. J. Taiwan Institute of Chem. Eng., 117: 190-197.

Meenach, S.A., Hilt, J.Z. and Anderson, K.W. (2010). Poly (ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater., 6: 1039–1046.

Menon, S., Dutta, S., Madaboosi, N. and Sai, V.V.R. (2024). Cobalt-Doped ZIF-8 Nanoparticle-Decorated Fiber Optic Sensor for Copper Ion Detection. ACS Appl. Nano Mater., 718346-18356

Mohammed, L., Gomma, H.G., Ragal, D. and Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30: 1-14.

Mollarasouli, F.Zor, E., Ozcelikay, G. and Ozkan, S.A. (2021). Magnetic nanoparticles in developing electrochemical  sensors for pharmaceutical and biomedical applications. Talanta, 226: 122108.

Moradina, F., Fardood, S.T., Ramazani, A., Min, B.K., Joo, S.W. and Varma, R.S. (2021). Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization and photocatalytic applications. J. Clean Prod., 288: 125632.

Mourdikoudis, S., Pallares, R.M. and Than, N. (2018). Characterizations techniques for nanoparticles: comparision and complementarity upon studying nanoparticles. Nanoscale, 10: 12871-12934.

Nawara, K., Romiszewski, J., Kijajiwska, K., Sjczytko, J., Twardowski, A., Mazur, M. and Krysinski, P. (2012). Adsorption of doxorubicin onto citrate stabilized magnetic nanoparticles. The J. Phys. Chem. C, 116: 5598-5609.

Nejad, S.B. and Mohammadi, A. (2020). Epoxy-Triazinetrione-Functionalized Magnetic Nanoparticles as an Efficient Magnetic Nanoadsorbent for the Removal of Malachite Green and Pb(II) from Aqueous Solutions. J. Chem. Eng. Data, 65: 2731-2742.

Nigam, S., Barick, K.C. and Bahadur, D. (2011). Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater., 323: 237–243.

Nordin, A.H., Wong, S., Ngadi, N., Zainol, M.M., Latif, N.A.F.A. and Nabgan, W. (2021). Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater. J. Environ. Chem. Eng., 9: 104639.

Othman, N.H., Alias, N.H., Shahruddin, M.Z., Bakar, N.F.A., Him, N.R.N. and Lau, W.J. (2018). Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng., 6: 2803-2811.

Ozel, F. and Kochkar, H. (2015). Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature. J. Magn. Magn. Mater., 373: 213-216.

Pandya, S.R. and Singh, M. (2016). Preparation and characterization of magnetic nanoparticles and their impact on anticancer drug binding and release processes moderated through a 1st tier dendrimer. RSC Adv., 6: 37391-37402.

Park, I.K., Ng, C.P., Wang, J., Chu, B., Yuan, C., Zhang, S. and Pun, S.H. (2008). Determination of nanoparticle vehicle unpackaging by MR imaging of a T2 magnetic relaxation switch. Biomaterials, 29: 724– 732.

Pepping, J. (1999). Complementary and integrative approaches to dementia. Am. J. Health Syst. Pharm., 56: 1195-1198.

Peralta, M.E., Martire , D.O., Moreno, M.S., Parolo, M.E. and Carlos, L. (2021). Versatile nanoadsorbent based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. J. Environ. Chem. Eng., 9: 104841.

Perez, J.A.L., Quintela, M.A.L., Mira, J., Rivas, J. and Charles, S.W. (1997). Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B, 101: 8045-8047.

Poonguzhali, R.V. Ranjith, Kumar, E Ch. Srinivas,  Alshareef,  M.,  Aljohani,  M.M.,  Keshk,  A.A., Metwaly, N.M. and Arunadevi, N. (2023). Natural lemon extract assisted green synthesis for LPG Sensor.  Sens. Actu. B: Chem.,  377: 133036.

Prasad, C., Gangadhara, S. and Venkateswarlu, P. (2016). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. App. Nanosci., 6: 797-802.

Predescu, E.C. , Predescu, A. and Ficai, D. (2015). The effect of Si content on ferrihydrite sorption capacity for Pb (II), Cu (II), Cr (VI), and P (V). Environ. Eng. Manag. J., 14(5): 1001.

Qiao, Y., Yao, Z., Wang, X., Zhang, X., Bai, C., Li, Q., Chen, K., Li, Z. and Zheng, T. (2020). Lattice composites with embedded short carbon fiber/Fe3O4/epoxy hollow spheres for structural performance and microwave absorption. Mater. Des., 188: 108427.

Rajiv, P., Bavadharani, B., Kumar, M.N. and Vanathi, P. (2017). Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal. and Agric. Biotechnol., 12: 45-49.

Rana, S., Shetake, N.G., Barick, K.C., Pandey, B.N., Salunke, H.G. and Hassan, P.A. Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 45: 17401-17408.

Rasouli, K., Alamdari, A. and Sabbagh, S. (2023). Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design. Sep. Purif. Technol., 307: 122799.

Rathan Kumar, A.K., Saikia, K., Neeraj, G., Cabana, H. and Kumar, V.V. (2020). Remediation of  biorefinery wastewater containing organic and inorganic toxic pollutants by adsorption onto  chitosn-based magnetic nanoadsorbent. Water Qual. Res. J., 55(1): 36-51.

Reddy, C.V., Reddy, I.N., Ravindranadh, K., Reddy, K.R., Shetti, N.P., Kim, D., Shim, J. and Aminabhavi, T.M. (2020). Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manag., 260: 110088.

Reziq, R.A., Alper, H., Wang, D. and Post, M.L. (2006). Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J. Am. Chem. Soc., 128: 5279-5282.

Rodriguez, A.F., Moya, C., Toroella, M.E., Romero, A., Labarta,  A. and Batlle, X. (2018). The role of cobalt ferrite magnetic nanoparticles in medical science. J. Mater. Chem. C, 6: 875-882.

Roy, A. and Bhattacharya, J. (2012). Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes. Cheml. Eng. J., 211: 493-500.

S. Islam, M. A. Raza and S. Naseem, (2020). Ceramic Inter., 46: 1942-1951.

Sahu, D., Pervez, S., Karbhal, I., Tamrakar, A., Mishra, A., Verma, S.R., Deb, M.K., Ghosh, K.K., Pervez, Y.F., Shrivas, K., Satnami, M.L. (2024). Applications of different adsorbent materials for the removal of organic and inorganic contaminants from water and wastewater-A review. Desalin. Water Treat., 317: 100253.

Salabat, A. and Mirhoseini, F. A (2018). Novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq., 268: 849–853.

Santos, T.A.P. (2014). Sensors and biosensors based on magnetic nanoparticles. Trends Anal. Chem., 62: 28-36.

Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B.J., Oh, E., Stewart, M.H., and Medintz, I.L. (2013). Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev., 113: 1904–2074.

Shafaei, S. and Sharafian, S. (2019). Green Synthesis of Imidazole Derivatives via Fe3O4‐MNPs as Reusable Catalyst. J. of Heterocycl. Chem. 56: 2644-2650.

Shankar, U., Kumar, A., Chaurasia, S.K., Kumar, P., Latif, F.A. and Yahya, M.Z.A. (2023). Structural, Optical, and Magnetic Properties of PMMA-Magnetite (Fe3O4) Composites: Role of Magneto-Conducting Filler Particles. J. Electron Mater., 52(7): 4375-4387.

Sharma, R.K., Yadav, S., Gupta, R. and Arora, G. (2019). Synthesis of magnetic nanoparticles using potato extract for dye degradation: A green chemistry experiment. J. Chem. Ed., 96: 3038-3044.

Shukla, S., Khan, R. and Daverey, A. (2021). Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review. Environ. Technol. Innov., 24: 101924.

Singer, N., Pillai, R.G., Johnson, A.D., Harris, K.D. and Jemere, A.B. (2020). Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Michrochim. Acta., 187:12346

Sivakami, S., Renuka Devi, K., Renuka, R. and Thilagavathi, T. (2020). Green synthesis of magnetic nanoparticles via cinnamomum verum bark extract for biological application. J. Environ. Chem. Eng., 8: 104420.

Soshnikova, Y.M., Roman, S.G., Chebotareva, N.A., Baum, O.I., Obrezkova, M.V., Gillis, R.B., Harding, S.E., Sobol, E.N. and Lunin, V.V. (2013). Starch modified magnetite nanoparticles for impregnation into cartilage. Journal of Nanopart. Res., 15: 2092-2098.

Sun, X., Ma, G., Lv, X., Sui, M., Li, H., Wu, F. and Wang, J. (2018). Controllable fabrication of Fe3O4/ZnO core-shell nanocomposites and their electromagnetic wave absorption performance in the 2-18GHz frequency range. Materials, 11: 780.

Sun, Y.K, Ma, M., Zhang, Y. and Gu, N. (2004). Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A: Physiochem. Eng. Asp., 245: 15-19

 

Swihart, M.T. (2003). Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interface Sci., 8: 127-133.

Tartaj, P., González-Carreño, T. and Serna, C.J. (2001). Single‐step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv. Mater., 13: 1620–1624.

Tiefenauer, L.X., Kuhne, G. and Andres, Y.R. (1993). Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug. Chem., 4: 347-352.

Tonghan, G., Zhang, Y., Khan, S.A. and Hatton, T.A. (2019). Continuous flow synthesis of superparamagnetic nanoparticles in reverse miniemulsion systems. Colloids Interface Sci. Commun., 28: 1-4.

Uzunoğlu, D. and Özer, A. (2022). Facile Synthesis of Magnetic Iron-Based Nanoparticles from the Leach Solution of Hyperaccumulator Plant Pinus brutia for theAntibacterial Activity and Colorimetric Detection of Ascorbic Acid. ACS Appl. Bio Mater., 5: 5465-5476.

Vojoudi, H., Badiei, A., Banaei, A. , Bahar, S., Karimi, S., Ziarani, G.M. and Ganjali, M.R. (2017). Extraction of gold, palladium and silver ions using organically modified silica-coated magnetic nanoparticles and silica gels as a sorbent. Microchim. Acta., 184: 3859-3866.

Wagener, M. and Ther, B.G. (1999). Sputtering on liquids–a versatile process for the production of magnetic suspensions? J. Magn. Magn. Mater., 201: 41-44.

Wang, J., Wu, X., Wang, C., Rong, Z., Ding, H., Li, H., Li, S., Shao, N., Dong, P., Xiao, R. and Wang, S. (2016). Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl. Mater Interfaces, 8: 19958-19967.

Wang, R., Wan, Y., He, F., Qi, Y., You, W. and Luo, H. (2012). The synthesis of a new kind of magnetic coating on carbon fibers by electrodeposition. Appl. Surf. Sci., 58: 3007-3011.

Wang, S., Bao, H., Yang, P. and Chen, G. (2008). Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal. Chim. Acta., 612: 182-189.

Wang, W., Xiao, X., Chen, J. and Jia, L. (2015). Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules. J. Chromatogr. A, 1411: 92-100.

Wang, Y., Dostalek, J. and Knoll, W. (2011). Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal. Chem., 83: 6202-6207.

Wang, Y., Li, J. and Wei, Z. (2018). Transition-metal-oxide-catalyst for oxygen reduction reactions. J. Mater. Chem. A, 6: 8194-8209.

Wang, Y., Pan, J.A., Wu, H. and Talapin, D.V. (2019). Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano, 13: 13917-13931.

Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X. and Deng, X. (2012). Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng., 27: 632-637.

Weng, X., Huang, L., Chen, Z., Meghraj, M. and Naidu, R. (2013). Synthesis of iron based nanoparticles by green tea extract and their degradation of malachite. Ind. Crops Prod., 51: 342-347.

Weteskog, E., Castro, A., Zeng, L., Petronis, S., Heinke, D., Olsson, E., Nilsson, L., Gehrke, N. and Snedlindh, P. (2017). Size and property bimodality in magnetic nanoparticle dispersions: single domain particles vs. strongly coupled nanoclusters. Nanoscale, 9: 4227-4235.

Wierucka, M. and Biziuk, M. (2014). Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal. Chem., 59: 50-58.

Wu, R., Liu, J.H., Zhao, L., Zhang, X., Xie, J., Yu, B., Ma, X., Yang, S.T., Wang, H. and Liu, Y. (2014). Hydrothermal preparation of magnetic Fe3O4@ C nanoparticles for dye adsorption. J. Environ. Chem. Eng., 2(2): 907-913.

Wulandari, O., Santjojo, D.J.D.H., Shobirin, R.A. and Sabarudin, A. (2017). Characteristics and magnetic properties of chitosan-coated Fe3O4 nanoparticles prepared by ex-situ co-precipitation method. Rasayan J. Chem., 10(4): 1348-1358.

Xia, L.Y., Zhang, M.Q., Yuan, C. and Rong, M.Z. (2011). A facile heteroaggregate-template route to hollow magnetic mesoporous spheres with tunable shell structures. J Mater. Chem., 21: 9020–9026.

Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and  Zou, G. (2007). Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater., 309: 307-311.

Xue, B. and Sun, Y. (2001). Protein adsorption equilibria and kinetics to a poly (vinyl alcohol)-based magnetic affinity support. J. Chromatogr. A, 921: 109–119.

Yang, H., Jang, S., Hong, S., Lee, K., Roh, C., Luh, Y. and Seo, B. (2016). Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water. J. Alloys Compd., 657: 387-393.

Yang, T. and Cong, H.L. (2019). Analysis of factors affecting preparation of magnetic Fe3O4@PS nanospheres. Integr. Ferroelectr., 198: 137-141.

Yin, L., Liu, L., Lin, S., Owens, G. and Chen, Z. (2022). Synthesis and characterization of Nanoscale Zero-Valent Iron (nZVI) as an adsorbent for the simultaneous removal of As (III) and As (V) from groundwater. J. Water Proc. Engineering, 47: 102677.

You, J., Wang, L., Zhao, Y. and Bao, W. (2021). A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects. J. Clean. Prod., 281: 124668.

Yuvakkumar, R. and Hong, S. (2014). Green synthesis of spinel magnetite iron oxide nanoparticles. Adv. Mater. Res., 1051: 39-42.

Zamay, G.S., Zamay, T.N., Lukyanenko, K.A. and Kichkailo, A.S. (2020). Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicine. Biomedicines, 8: 59-72.

Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., Wang, H. and Zhu, G. (2016). Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sci., 52: 42-48.

Zhang, M., Du, H., Wei, Z., Zhang, X. and Wang, R. (2021). Facile electrodeposition of Mn-CoP nanosheets on Ni foam as high-rate and ultrastable electrodes for supercapacitors. ACS Appl. Energy Mater., 5: 186-195.

Zhang, X., Chen, L., Liu, R., Li, D., Ge, X. and Ge, G. (2019). The Role of the OH Group in Citric Acid in the Coordination with Fe3O4 Nanoparticles. Langmuir, 35: 8325-8332.

Zhang, Z. and Wen, G. (2020). Synthesis and characterization of carbon-encapsulated magnetite, martensite and iron nanoparticles by high-energy ball milling method. Mater. Charact., 167: 110502.

Zuluaga, J.M., Restrepo, J. and Lopez, J.M. (2007). Surface anisotropy of a Fe3O4 nanoparticle: A simulation approach. Phys B: Condens. Matter, 398: 187-190.

Related Images:



Recent Images



A Review on role of Congestion Control Techniques in Internet of Things
Recent Advancement in Capsule: Emerging Novel Technologies and Alternative Shell Materials for Wide Range of Therapeutic Needs
Effect of L-Dopa on cypermethrin induced reproductive conditions in female Japanese quail, Coturnix coturnix japonica
Preparation, Characterization, and Applications of Albumin Serum-Based Nanoparticles
Study of developmental stages and morphometrics of Parthenium beetle in Bastar plateau agro-climatic zone of Chhattisgarh
PANI Incorporated Fe-MOF: As an Electrode Material for Supercapacitor
Surface Modified Magnetic Nanoparticles as an Efficient Material for Wastewater Remediation: A Review
A Review on Groundwater Pollution in India and their Health Problems
Incidence of Chronic fever in Raigarh Development Block of Raigarh District, Chhattisgarh, India
Study the optimization of Dijkstra’s Algorithm

Tags


Recomonded Articles:

Author(s): Jyoti Goswami, Thakur Vikram Singh; Chhaya Bhatt; Deepak Kumar Sahu; Kalpana Wani; Ajay Kumar Sahu; Prashant Mundeja; Manish Kumar Rai*; Joyec Rai

DOI: 10.52228/JRUB.2020-33-1-9         Access: Open Access Read More

Author(s): Sayan Biswas; Joydeb Chanda; Amrendra Tiwari; Pulok K Mukherjee

DOI:         Access: Open Access Read More

Author(s): Gamini Sahu; Aditi Niyogi Poddar

DOI:         Access: Open Access Read More

Author(s): Prasad A Wadegaonkar

DOI:         Access: Open Access Read More

Author(s): C K Katiyar

DOI:         Access: Open Access Read More

Author(s): Achla Jain; SD Belsare

DOI:         Access: Open Access Read More

Author(s): Keshar Verma; Sudheer Bhoi; Yash Parhad; Manas Kanti Deb

DOI: 10.52228/JRUB.2023-36-1-6         Access: Open Access Read More

Author(s): Alka Kaushik; SK Jadhav

DOI:         Access: Open Access Read More

Author(s): Sanmoy Karmakar

DOI:         Access: Open Access Read More

Author(s): Moumita Sinha; Pragya Gajendra; Mitashree Mitra

DOI:         Access: Open Access Read More

Author(s): Richa Tembekar; Kallol K. Ghosh; Angel Minj; Abhishek Katendra

DOI: 10.52228/JRUB.2024-37-2-15         Access: Open Access Read More

Author(s): Sahdev; Tomeshwar; Kuldeep

DOI: 10.52228/JRUB.2024-37-2-16         Access: Open Access Read More