REFERENCES
Ahmad,
S., Ali Khan, M.M. and Mohammad, F. (2018). ACS Omega, 3: 9378-9387.
Ali, I., Peng, C., Naz, I. and Amjed, M.A. (2019). Water
purification using magnetic
Nanomaterials: an overview. Magnetic Nanostructures: Environ. Agri.
Applications, 51: 161-179.
Ali, I., Peng, C., Naz, I., Khan, Z.M.,
Sultan, M., Islam, T. and Abbasi, I.A. (2017). Phytogenic magnetic
nanoparticles for wastewater treatment:
A review. RSC Adv., 7: 40158–40178.
Arvand, M. and Hemmati, S. (2017). Magnetic nanoparticles embedded with graphene quantum dots and
multiwalled carbon nanotubes as a sensing platform for electrochemical
detection of progesterone. Sens. Actuators B: Chem., 238: 346-356.
Atta, A.M., Moustafa, Y.M., Lohedan, H.A., Ezzat, A.O.
and Hashem, A.I. (2020). Methylene blue catalytic degradation using silver and
magnetite nanoparticles functionalized with a poly(ionic liquid) based on
quaternized dialkylethanolamine with 2-acrylamido-2- methyl propane
sulfonate-co-vinylpyrrolidone. ACS Omega, 5(6): 2829-2842.
Aydin, S., Beduk, F., Ulvi, A. and Aydin, M.E. (2021). Simple and effective removal of psychiatric
pharmaceuticals from wastewater treatment plant effluents by magnetite red mud
nanoparticles. Sci. Total Environ., 784: 147174.
Bai, L., Du, Y., Peng, J, Liu, Y., Wang, Y., Yang, Y. and
Wang, C. (2014). Peptide-based isolation of circulating tumor cells by
magnetic nanoparticles. J. Mater. Chem. B,
2: 4080-4088.
Bao, Y., Wen, T., Cristina, A., Samia, S., Khandhar, A.
and Krishnan, K.M. (2016). Magnetic nanoparticles: material engineering and emerging
applications in lithography and biomedicine.
J Mater Sci., 51: 513-553.
Behestkhoo, N., Kouhbanani, M.A.,
Savardashtaki, A., Amani, A.M. and Taghizadeh, S. (2018). Green synthesis of iron oxide nanoparticles by aqueous
leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys A, 124: 1-7.
Bradley, M.J., Biacchi,
A.J. and Schaak, R.E. (2013). Chemical Transformation
of Pt–Fe3O4 Colloidal Hybrid Nanoparticles into
PtPb–Fe3O4 and Pt3Sn–Fe3O4 Heterodimers
and (PtPb–Fe3O4)n Nanoflowers. Chem.
Mater., 25: 1886-1892.
Bui,
T.Q., Ton, S.N., Duong, A. and Tran, H.T. (2018). Dependence of magnetic
responsiveness on particle size of magnetite nanoparticles synthesised by
co-precipitation method and solvothermal method. J. Sci: Adv. Mater. Devices,
3: 107-112.
Cao, M., Li, Z., Wang, J., Ge, W., Yue, T., Li, R.,
Colvin, V.L. and Yu, W.W. (2012). Food related applications of magnetic iron oxide
nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci. Technol., 27: 47-56.
Chen, F., Xie, S., Huang, X. and Qiu, X.
(2017). Ionothermal synthesis of Fe3O4 magnetic
nanoparticles as efficient heterogenous fenton-like catalyst for degradation of
organic pollutants with H2O2. J. Hazard. Mater., 322:
152-162.
Chen, H., Li, Y., Wu, H., Sun, N. and Deng, C. (2019).
Smart hydrophilic modification of magnetic mesoporous silica with zwitterionic
L-cysteine for endogenous glycopeptides recognition. ACS Sustain. Chem. Eng.,
7: 2844-285.
Chen, J. and Zhu, X. (2016). Magnetic
solid phase extraction using ionic liquid-coated core–shell magnetic
nanoparticles followed by high-performance liquid chromatography for
determination of Rhodamine B in food samples. Food Chem., 200:
10-15
Cheng, Y., Liu, Y., Huang, J., Li, K., Xian, Y., Zhang,
W. and Jin, L. (2009). Amperometric tyrosinase biosensor based on Fe3O4
nanoparticles-coated carbon nanotubes nanocomposites for rapid detection of
coliforms. Electrochimic. Acta, 54: 2588-2594.
Chorny, M., Polyak, B., Alferiev, I.S., Walsh, K.,
Friedman, G. and Levy, R.J. (2007). Magnetically driven plasmid DNA delivery
with biodegradable polymeric nanoparticles. FASEB Jl, 21: 2510– 2519.Choudhury,
S.R. and Yanful, E.K. (2013). Kinetics of cadmium (II) uptake by mixed
maghemite-magnetite nanoparticles. J.
Environ. Manage., 123: 642-651.
Chuiprasert, J., Boontanon, N., Polprasert, C., Ramungul, N., Karawek, A. and Boontanon,
S.K. (2024). Ciprofloxacin Electrochemical
Sensor Using Copper−Iron MixedMetal Oxides Nanoparticles/Reduced Graphene Oxide
Composite. ACS
Omega, 9: 23172-23183.
Cole, A.J., David , A.E., Wang, J., Galban, C.J. and Yang
V.C. (2011). Magnetic brain tumor targeting and biodistribution of
long-circulating PEG-modified, cross-linked starch-coated iron oxide
nanoparticles. Biomaterials, 32: 6291-6301.
Cruz, B.D., Madkour, M., Amin, M.O. and
Hetlani, E.A. (2020). Efficient and recoverable magnetic AC-Fe3O4
nanocomposite for rapid removal of promazine from wastewater. Mater. Chem. Phys., 240: 122109.
Das, C., Sen, S., Singh, T., Ghosh, T., Paul, S.S., Kim,
T.W., Jeon, S., Maiti, D.K., Im, J. and Biswas, G. (2020). Green synthesis,
characterization and application of natural product coated magnetite
nanoparticles for wastewater treatment. Nanomaterials, 10(8): 1-19.
Djebbi, M.A., Allagui, L.,
Ayachi, M.S., Boubakri, S., Renault, N.J., Namour, P. and Amara, A.B.H. (2022).
Zero valent iron nanoparticles supported
on Biomass-Derived Porous Carbon for Simultaneous Detection
of Cd2+ and Pb2+.
ACS Appl. Nano Mater., 5: 546-558
Du, J., Zhang. T., Xing, J.L. and Xu, C.L. (2017). Hierarchical porous Fe3O4/Co3S4
nanosheets as an efficient electrocatalyst for the oxygen evolution
reaction. J. Mater. Chem. A, 5: 9210-9216.
Đurđić, S., Vlahović, F., Ognjanović, M., Gemeiner, P., Sarakhman, O., Stanković, V., Mutić, J., Stanković, D. and Švorc, L. (2024). Nano-size
cobalt-doped cerium oxide particles embedded
into graphitic carbon
nitride for enhanced electrochemical sensing of
insecticide fenitrothion. Sci. Total Environ., 909: 168483.
Fall, B., Sall, D.D., Hémadi, M., Karim,
A., Diaw, D., Fall, M. and Thomas, S.
(2023). Highly efficient non-enzymatic
electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with
nickel nanoparticles(GCE/CNT/MoS2/NiNPs) Sens. Actuators Rep., 5: 100136.
Fatimah, I., Pratiwi, E.Z. and Wicaksono, W.P. (2020).
Synthesis of magnetic nanoparticles using parkia speciosa hassk pod extract and
photocatalytic activity for Bromophenol blue degradation. Egypt. J. Aquatic
Res., 46: 35-40.
Ferrag, C., Noroozifar, M. and Kerman, K. (2023). Ultralight
3D Graphene Oxide Aerogel Decorated with Pd–Fe Nanoparticles for
the Simultaneous Detection of Eight Biomolecules. ACS Appl. Mater Interfaces, 15, 23:
27502-27514.
Garcia, J.A.F., Alavarse, A.C., Maldonado,
A.C.M., Cordova, A.T., Ibarra, M.R. and Goya, G.F. (2020). Simple sonochemical method to optimize the heating
efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS Omega, 5(41): 26357-26364.
Gautam, K. and Tiwari, I. (2020). Humic acid functionalized magnetic nanomaterials for
remediation of dye wastewater under ultrasonication: Application in real water
samples, recycling and reuse of nanosorbents. Chemosphere, 245: 125553.
Granata, C., Russo, R., Esposito, E.,
Vettoliere, A., Russo, M., Musino, A., Peddis, D. and Fiorani, D. (2013). Magnetic properties of iron oxide nanoparticles
investigated by nanoSQUIDs. The Eur. Phys J. B,
86: 1-5.
Guo, W., Fu, Z., Zhang, Z., Wang, H., Liu, S., Feng, W.,
Zhao, X. and Giesy, J.P. (2020). Synthesis of Fe3O4
magnetic nanoparticles coated with cationic surfactants and their applications
in Sb(V) removal from water. Sci. Total
Environ., 710: 136302.
Hasanzadeh, M., Karimzadeh, A. and Shadjou, N. (2016). Synthesis, electrodeposition, characterization and application
as an electrochemical sensor towards determination of some amino acids at
physiological pH. Mater. Sci. and Eng.: C, 68: 814-830.
He, Q., Liu, J., Liang, J., Liu, X., Tuo, D. and Li, W.
(2018). Chemically surface tunable solubility parameter for controllable drug
delivery-an example and perspective from hollow PAA-coated magnetite
nanoparticles with R6G model drug. Materials, 11: 247–263.
Hong, R.Y., Pan, T.T., Han, Y.P., Li, H.Z., Ding, J. and
Han, S. (2007). Magnetic field synthesis of Fe3O4
nanoparticles used as a precursor of ferrofluids. J. Magn. Magn. Mater., 310:
37-47.
Huang,
Q., Liu, Y., Zhang, C., Zhang, Z., Liu, F. and Peng, J. (2020). Au quantum
dot/ nickel Tetraminophthalocyanaine−
GrapheneOxide-Based Photoelectrochemical Microsensor for Ultrasensitive
Epinephrine Detection. ACS Omega, 5:
8423-8431.
Huang, Y. and Keller, A. A. (2013). Magnetic nanoparticle
adsorbents for emerging organic contaminants. ACS Sustainable Chem. Eng.,
1, 7: 731-736.
Jadhav, V., Chikode, P., Nikam, G. and Sabale, S. (2016).
Polyol synthesis and characterization of ZnO@CoFe2O4
MNP’s to study the photodegradation rate of azo and diphenyl type dye. Mater.
Today: Proc., 3: 4121-4127.
Joshi, N., Filip, J., Coker, V.S., Sadhukhan, J.,
Safarik, I., Bagshaw, H. and Lloyd, J.R. (2018). Microbial reduction of natural
Fe (III) minerals; towards the sustainable production of functional magnetic
nanoparticles. Front. Environl. Sci., 127: 556-578.
Jouyandeh, M., Paran, S.M.R., Shabanian, M., Ghiyasi, S.,
Vahabi, H., Badawi, M., Formela, K.,
Puglia, D. and Saeb, M.R. (2018). Curing behavior of epoxy/Fe3O4
nanocomposite: A comparision between the effects of bare Fe3O4,
Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan
/imide/phenylalanine-modified nanofillers. Prog. Organic Coatings, 123: 10-19.
Kheilkordi, Z., Ziarani, G.M., Mohajer, F., Badiei, A.
and Sillanpaa, M. (2022). Recent advances in the application of magnetic
bio-polymers as a catalyst in multi component reactions. RSC Adv., 12:
12672-12701.
Khodadadi, M., Musawi, T.J.A., Kamani, H.,
Silva, M.F., Panahi, A.H. (2020). The practical
utility of the synthesis FeNi3@ SiO2@ TiO2
magnetic nanoparticles as an efficient photocatalyst for the humic acid
degradation. Chemosphere, 239: 124723.
Kim, D.H., Vitol, E.A., Liu, J.,
Balasubramanian, S., Gosztola, D.J., Cohen, E.E., Novosad, V. and Rozhkova,
E.A. (2013). Stimuli-responsive magnetic nanomicelles as multifunctional heat
and cargo delivery vehicles. Langmuir, 29: 7425–7432.
Koventhan, C., Shanmugam, R. and Chen,
S.M. (2023). Development of highly sensitive
electrochemical sensor for antipsychotic
drug perphenazine using perovskite structured lanthanum cobalt oxide
nanoparticles wrapped graphitic carbon nitride nanocomposites. Electrochim. Acta,
467: 143096.
Kumari, M. and Gupta, S.K. (2020). A
novel process of adsorption cum enhanced
coagulation flocculation spiked with magnetic
nanoadsorbents for the removal of aromatic and hydrophobic
fraction of natural organic matter along with turbidity from drinking
water. J. Clean Prod., 244: 118899.
Kurlyandskaya, G.V., Beitia, I.M., Beketov, I.V.,
Medvedev, A.I., Larranaga, A., Safronov, A.P. and Bhagat, S.M. (2014). Structure, magnetic and microwave properties of FeNi
nanoparticles obtained by electric explosion of wire. J. Alloys Compd., 615: 231-235.
Li, J., Guo, L.T., Shangguan, E., Yue, M.Z., Xu, M.,
Wang, D., Chang, Z.R. and Li, Q.M. (2017). Synthesis of novel spherical Fe3O4@
Ni3S2 composite as improved anode material for
rechargeable nickel-iron batteries. Electrochim. Acta., 240: 456-465.
Li, W., Ma, Y., Guo, Z., Xing, R. and Liu, Z.
(2020). Efficient screening of glycan-specific aptamers using a glycosylated
peptide as a scaffold. Anal. Chem., 93: 956-963.
Low, L.E., Tey, B.T., Oong, B.H. and Tang,
S.Y. (2018). A facile and rapid sonochemical synthesis of monodispersed Fe3O4@cellulose
nanocrystals nanocomposites without inert gas protection. Asia Pacific J. Chem.
Eng., 13: 1-16.
Luo, S., Zheng, X. and Cheng, J.P. (2008).
Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. Chem.
Comm., 44: 5719-5721.
Ma, Z., Shan, C.,
Liang, J. and Tong, M. (2018). Efficient adsorption of Selenium (IV) from water
by hematite modified magnetic nanoparticles. Chemosphere, 193: 134-141.
Macdonald, J.E. and Veinot, J.G.C. (2008). Removal of residual metal
catalysts with Iron/ iron oxide nanoparticles from coordinating environments.
Langmuir, 24: 7169-7177.
Majidi, S., Sehrig, F.Z., Farkhani, S.M., Goloujeh, M.S.
and Akbarzadeh, A. (2016). Current method for synthesis of magnetic
nanoparticles. Nanomed. Biotechnol., 44: 722–734.
Maleki, B. and Esmaeili, H. (2023). Application of Fe3O4/SiO2@ZnO
magnetic composites as a recyclable heterogeneous nanocatalyst for biodiesel
production from waste cooking oil: Response surface methodology. Ceram.
Int., 49: 11452-11463.
Marcus, M., Smith, A., Maswadeh, A., Shemesh, Z., Zak,
I., Motiei, M., Schori, H., Margel, S., Sharoni, A. and Shefi, O. (2018).
Magnetic targeting of growth factors using iron oxide nanoparticles.
Nanomaterials, 8: 707-724.
Mcbain, S.C., Yiu, H.H.P., El. Haj, A. and
Dobson, J. (2007). Polyethyleneimine functionalized iron oxide nanoparticles as
agents for DNA delivery and transfection. J. Mater. Chem., 17: 2561-2565.
Mdlovu, N.V., Lin, K.S., Mavuso, F.A. and Weng, M.T.
(2020). Preparation, characterization and in-vitro studies of
doxorubicin-encapsulated silica coated iron oxide nanocomposites on liver
cancer cells. J. Taiwan Institute of Chem. Eng., 117: 190-197.
Menon,
S., Dutta, S., Madaboosi, N. and Sai, V.V.R. (2024). Cobalt-Doped ZIF-8 Nanoparticle-Decorated
Fiber Optic Sensor
for Copper Ion Detection. ACS Appl. Nano Mater., 7: 18346-18356
Mollarasouli,
F., Zor, E., Ozcelikay, G. and Ozkan, S.A.
(2021). Magnetic nanoparticles in developing
electrochemical sensors for
pharmaceutical and biomedical applications. Talanta, 226: 122108.
Moradina, F.,
Fardood, S.T., Ramazani, A., Min, B.K., Joo, S.W. and Varma, R.S. (2021).
Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green
sol-gel synthesis, characterization and photocatalytic applications. J. Clean
Prod., 288: 125632.
Mourdikoudis, S., Pallares, R.M. and Than, N. (2018).
Characterizations techniques for nanoparticles: comparision and complementarity
upon studying nanoparticles. Nanoscale, 10: 12871-12934.
Nawara, K., Romiszewski, J., Kijajiwska, K., Sjczytko,
J., Twardowski, A., Mazur, M. and Krysinski, P. (2012). Adsorption of
doxorubicin onto citrate stabilized magnetic nanoparticles. The J. Phys. Chem.
C, 116: 5598-5609.
Nejad, S.B. and Mohammadi, A. (2020). Epoxy-Triazinetrione-Functionalized Magnetic Nanoparticles as
an Efficient Magnetic Nanoadsorbent for the Removal of Malachite Green and
Pb(II) from Aqueous Solutions. J. Chem. Eng. Data, 65: 2731-2742.
Nordin, A.H., Wong, S., Ngadi, N., Zainol,
M.M., Latif, N.A.F.A. and Nabgan, W. (2021). Surface functionalization of
cellulose with polyethyleneimine and magnetic nanoparticles for efficient
removal of anionic dye in wastewater. J. Environ. Chem. Eng., 9: 104639.
Othman, N.H., Alias, N.H., Shahruddin, M.Z., Bakar,
N.F.A., Him, N.R.N. and Lau, W.J. (2018). Adsorption kinetics of methylene blue
dyes onto magnetic graphene oxide. J. Environ. Chem. Eng., 6: 2803-2811.
Pandya, S.R. and Singh, M. (2016). Preparation and characterization of magnetic
nanoparticles and their impact on anticancer drug binding and release processes
moderated through a 1st tier dendrimer. RSC Adv., 6:
37391-37402.
Pepping, J. (1999). Complementary and integrative approaches to dementia. Am. J. Health Syst. Pharm., 56: 1195-1198.
Peralta, M.E., Martire , D.O., Moreno, M.S., Parolo, M.E.
and Carlos, L. (2021). Versatile nanoadsorbent based on magnetic mesostructured
silica nanoparticles with tailored surface properties for organic pollutants
removal. J. Environ. Chem. Eng., 9: 104841.
Poonguzhali,
R.V., Ranjith, Kumar, E , Ch. Srinivas, Alshareef, M., Aljohani, M.M., Keshk, A.A., Metwaly, N.M.
and Arunadevi, N.
(2023). Natural lemon extract assisted green
synthesis for LPG Sensor. Sens.
Actu. B: Chem., 377: 133036.
Predescu,
E.C. , Predescu, A. and Ficai, D. (2015). The effect of Si content on
ferrihydrite sorption capacity for Pb (II), Cu (II), Cr (VI), and P (V).
Environ. Eng. Manag. J., 14(5): 1001.
Rajiv, P., Bavadharani, B., Kumar, M.N. and Vanathi, P.
(2017). Synthesis and characterization of biogenic iron oxide nanoparticles
using green chemistry approach and evaluating their biological activities.
Biocatal. and Agric. Biotechnol., 12: 45-49.
Rana, S., Shetake, N.G., Barick, K.C., Pandey, B.N.,
Salunke, H.G. and Hassan, P.A. Folic acid conjugated Fe3O4
magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans., 45: 17401-17408.
Rasouli, K., Alamdari, A. and Sabbagh, S. (2023). Ultrasonic-assisted synthesis of α-Fe2O3@TiO2
photocatalyst: Optimization of effective factors in the fabrication of
photocatalyst and removal of non-biodegradable cefixime via response surface
methodology-central composite design. Sep. Purif. Technol., 307: 122799.
Rathan Kumar, A.K., Saikia, K., Neeraj, G.,
Cabana, H. and Kumar, V.V. (2020). Remediation of biorefinery wastewater containing organic and
inorganic toxic pollutants by adsorption onto
chitosn-based magnetic nanoadsorbent. Water Qual. Res. J., 55(1): 36-51.
Reddy, C.V., Reddy, I.N., Ravindranadh, K., Reddy, K.R.,
Shetti, N.P., Kim, D., Shim, J. and Aminabhavi, T.M. (2020). Copper-doped ZrO2 nanoparticles as
high-performance catalysts for efficient removal of toxic organic pollutants
and stable solar water oxidation. J.
Environ. Manag., 260: 110088.
S. Islam, M. A. Raza and S. Naseem, (2020). Ceramic
Inter., 46: 1942-1951.
Sahu, D., Pervez, S., Karbhal, I., Tamrakar,
A., Mishra, A., Verma, S.R., Deb, M.K., Ghosh, K.K., Pervez, Y.F., Shrivas, K.,
Satnami, M.L. (2024). Applications of different adsorbent materials for the
removal of organic and inorganic contaminants from water and wastewater-A
review. Desalin. Water Treat., 317: 100253.
Salabat, A. and Mirhoseini, F. A (2018). Novel and simple microemulsion method for
synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq., 268: 849–853.
Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B.,
Casey, B.J., Oh, E., Stewart, M.H., and Medintz, I.L. (2013). Functionalizing
nanoparticles with biological molecules: developing chemistries that facilitate
nanotechnology. Chem. Rev., 113: 1904–2074.
Shafaei, S. and Sharafian, S. (2019). Green Synthesis of Imidazole Derivatives via Fe3O4‐MNPs
as Reusable Catalyst. J. of Heterocycl.
Chem. 56: 2644-2650.
Singer, N.,
Pillai, R.G., Johnson, A.D., Harris, K.D. and Jemere, A.B. (2020).
Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose
sensing. Michrochim. Acta., 187:12346
Sivakami, S., Renuka Devi, K., Renuka, R. and
Thilagavathi, T. (2020). Green synthesis of magnetic nanoparticles via
cinnamomum verum bark extract for biological application. J. Environ. Chem.
Eng., 8: 104420.
Soshnikova, Y.M., Roman, S.G., Chebotareva, N.A., Baum,
O.I., Obrezkova, M.V., Gillis, R.B., Harding, S.E., Sobol, E.N. and Lunin, V.V.
(2013). Starch modified magnetite nanoparticles for impregnation into
cartilage. Journal of Nanopart. Res., 15: 2092-2098.
Sun, X., Ma, G., Lv, X., Sui, M., Li, H., Wu, F. and
Wang, J. (2018). Controllable fabrication of Fe3O4/ZnO
core-shell nanocomposites and their electromagnetic wave absorption performance
in the 2-18GHz frequency range. Materials, 11: 780.
Tonghan, G., Zhang, Y., Khan, S.A. and Hatton, T.A.
(2019). Continuous flow synthesis of superparamagnetic
nanoparticles in reverse miniemulsion systems.
Colloids Interface Sci. Commun., 28: 1-4.
Uzunoğlu, D. and Özer, A. (2022). Facile
Synthesis of Magnetic Iron-Based Nanoparticles from the Leach Solution of
Hyperaccumulator Plant Pinus brutia for theAntibacterial Activity and
Colorimetric Detection of Ascorbic Acid. ACS Appl. Bio
Mater., 5: 5465-5476.
Vojoudi, H., Badiei, A., Banaei, A. , Bahar, S., Karimi,
S., Ziarani, G.M. and Ganjali, M.R. (2017). Extraction of gold, palladium and
silver ions using organically modified silica-coated magnetic nanoparticles and
silica gels as a sorbent. Microchim. Acta., 184: 3859-3866.
Wagener, M. and Ther, B.G. (1999). Sputtering on liquids–a versatile process for the
production of magnetic suspensions? J. Magn.
Magn. Mater., 201: 41-44.
Wang, J., Wu, X., Wang, C., Rong, Z., Ding, H., Li, H.,
Li, S., Shao, N., Dong, P., Xiao, R. and Wang, S. (2016). Facile synthesis of Au-coated magnetic nanoparticles and
their application in bacteria detection via a SERS method. ACS Appl. Mater Interfaces, 8: 19958-19967.
Wang, Y., Li, J. and Wei, Z. (2018).
Transition-metal-oxide-catalyst for oxygen reduction reactions. J. Mater. Chem. A, 6: 8194-8209.
Wang, Y., Pan, J.A., Wu, H. and Talapin, D.V. (2019).
Direct wavelength-selective optical and electron-beam lithography of functional
inorganic nanomaterials. ACS Nano, 13: 13917-13931.
Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X. and Deng, X.
(2012). Synthesis of Fe3O4 nanoparticles
and their magnetic properties.
Procedia Eng., 27: 632-637.
Weng, X., Huang, L., Chen, Z., Meghraj, M. and Naidu, R.
(2013). Synthesis of iron based nanoparticles by green tea extract and their
degradation of malachite. Ind. Crops Prod., 51: 342-347.
Weteskog, E., Castro, A., Zeng, L., Petronis, S., Heinke,
D., Olsson, E., Nilsson, L., Gehrke, N. and Snedlindh, P. (2017). Size and property bimodality in magnetic nanoparticle
dispersions: single domain particles vs. strongly coupled nanoclusters. Nanoscale, 9: 4227-4235.
Wu, R., Liu, J.H.,
Zhao, L., Zhang, X., Xie, J., Yu, B., Ma, X., Yang, S.T., Wang, H. and Liu, Y.
(2014). Hydrothermal preparation of magnetic Fe3O4@
C nanoparticles for dye adsorption. J. Environ. Chem. Eng., 2(2): 907-913.
Zhang, X., Chen, L., Liu, R., Li, D., Ge, X. and Ge, G.
(2019). The Role of the OH Group in Citric Acid in the
Coordination with Fe3O4 Nanoparticles. Langmuir, 35: 8325-8332.
Zhang, Z. and Wen, G. (2020). Synthesis and
characterization of carbon-encapsulated magnetite, martensite and iron
nanoparticles by high-energy ball milling method. Mater. Charact., 167: 110502.