References
Abhishek, N., Verma, A., Singh, A.,
Vandana, & Kumar, T. (2023). Metal-conducting polymer hybrid composites: A
promising platform for electrochemical sensing. Inorganic Chemistry
Communications, 157, 111334.
Behzadi pour, G., Fekri aval, L., &
Kianfar, E. (2023). Comparative studies of nanosheet-based supercapacitors: A
review of advances in electrodes materials. Case Studies in Chemical and
Environmental Engineering, 100584.
Benoy, S. M., Pandey, M., Bhattacharjya,
D., & Saikia, B. K. (2022). Recent trends in supercapacitor-battery hybrid
energy storage devices based on carbon materials. Journal of Energy Storage,
52, 104938.
Chaudhary, P., Bansal, S., Sharma, B. B., Saini,
S., & Joshi, A. (2024). Waste biomass-derived activated carbons for various
energy storage device applications: A review. Journal of Energy Storage, 78,
109996.
Das, A. K., Karan, S. K., & Khatua, B.
(2015). High Energy Density Ternary Composite Electrode Material Based on
Polyaniline (PANI), Molybdenum trioxide (MoO3) and Graphene
Nanoplatelets (GNP) Prepared by Sono-Chemical Method and Their Synergistic
Contributions in Superior Supercapacitive Performance. Electrochimica Acta,
180, 1–15.
Eftekhari, A., Li, L., & Yang, Y.
(2017). Polyaniline supercapacitors. Journal of Power Sources, 347, 86–107.
Elgrishi, N., Rountree, K. J., McCarthy,
B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A
Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical
Education, 95(2), 197–206.
Fei, Y., Jiang, Z., Zhou, D., Meng, F.,
Wu, Y., Xiong, Y., Ye, Y., Liu, T., Fei, Z., Kuang, T., Zhong, M., Li, Y.,
& Chen, F. (2023). Preparation a highly sensitive and flexible textile
supercapacitor based on lignin hydrogel and polyaniline@carbon cloth
composites. Journal of Energy Storage, 73, 108978.
Guan, C., Xia, X., Meng, N., Zeng, Z.,
Cao, X., Soci, C., Zhang, H., & Fan, H. J. (2012). Hollow core–shell
nanostructure supercapacitor electrodes: gap matters. Energy and Environmental
Science.
He, Y., Chen, W., Li, X., Zhang, Z., Fu,
J., Zhao, C., & Xie, E. (2012). Freestanding Three-Dimensional Graphene/MnO2
Composite Networks As Ultralight and Flexible Supercapacitor Electrodes. ACS
Nano, 7(1), 174–182.
Huang, S., Bi, D., Xia, Y., & Lin, H.
(2023). Facile Construction of Three-Dimensional Architectures of a
Nanostructured Polypyrrole on Carbon Nanotube Fibers and Their Effect on
Supercapacitor Performance. ACS Applied Energy Materials, 6(2), 856–864.
Jayakumar, S., Santhosh, P. C., Mohideen,
M. M., & Radhamani, A. (2023). A comprehensive review of metal oxides (RuO2,
Co3O4, MnO2 and NiO) for supercapacitor
applications and global market trends. Journal of Alloys and Compounds, 173170.
Jiang, R., Zhou, C., Yang, Y., Zhu, S.,
Li, S., Zhou, J., Li, W., & Ding, L. (2023). Rice straw-derived activated
carbon/nickel cobalt sulfide composite for high performance asymmetric
supercapacitor. Diamond and Related Materials, 139, 110322.
Karbhal, I., Basu, A., Patrike, A., &
Shelke, M. V. (2021). Laser patterning of boron carbon nitride electrodes for
flexible micro-supercapacitor with remarkable electrochemical
stability/capacity. Carbon, 171, 750–757.
Karbhal, I., Chaturvedi, V., Patrike, A.,
Yadav, P., & Shelke, M. V. (2022). Honeycomb Boron Carbon Nitride as
High‐Performance Anode Material for Li‐Ion Batteries. ChemNanoMat, 8(7).
Karbhal, I., Chaturvedi, V., Yadav, P.,
Patrike, A., & Shelke, M. V. (2022). Template Directed Synthesis of Boron
Carbon Nitride Nanotubes (BCN‐NTs) and Their Evaluation for Energy Storage
Properties. Advanced Materials Interfaces, 10(3).
Karbhal, I., Devarapalli, R. R., Debgupta,
J., Pillai, V. K., Ajayan, P. M., & Shelke, M. V. (2016). Facile Green
Synthesis of BCN Nanosheets as High‐Performance Electrode Material for
Electrochemical Energy Storage. Chemistry – a European Journal, 22(21),
7134–7140.
Kasprzak,
D., Mayorga-Martinez, C. C., & Pumera, M. (2022). Sustainable and Flexible
Energy Storage Devices: A Review. Energy & Fuels, 37(1), 74–97.
Kumar, N. A., Choi, H. J., Shin, Y. R.,
Chang, D. W., Dai, L., & Baek, J. B. (2012). Polyaniline-Grafted Reduced
Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 6(2),
1715–1723.
Li, L., Wu,
Z., Yuan, S., & Zhang, X. B. (2014). Advances and challenges for flexible
energy storage and conversion devices and systems. Energy & Environmental
Science, 7(7), 2101.
Li, Y., Zhou, M., Xia, Z., Gong, Q., Liu,
X., Yang, Y., & Gao, Q. (2020). Facile preparation of polyaniline
covalently grafted to isocyanate functionalized reduced graphene oxide
nanocomposite for high performance flexible supercapacitors. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 602, 125172.
Liao, Y., Shang, Z., Ju, G., Wang, D.,
Yang, Q., Wang, Y., & Yuan, S. (2023). Biomass Derived N-Doped Porous
Carbon Made from Reed Straw for an Enhanced Supercapacitor. Molecules, 28(12),
4633.
Olabi, A. G., Abbas, Q., Al Makky, A.,
& Abdelkareem, M. A. (2022). Supercapacitors as next generation energy
storage devices: Properties and applications. Energy, 248, 123617.
Oraon, R., De Adhikari, A., Tiwari, S. K.,
& Nayak, G. C. (2015). Nanoclay based graphene polyaniline hybrid
nanocomposites: promising electrode materials for supercapacitors. RSC
Advances, 5(84), 68334–68344.
Pandya, D. J., Muthu Pandian, P., Kumar,
I., Parmar, A., Sravanthi, Singh, N., Abd Al-saheb, A. J., & Arun, V.
(2023). Supercapacitors: Review of materials and fabrication methods. Materials
Today: Proceedings.
Ruan, S., Shi, M., Huang, H., Xia, Y.,
Zhang, J., Gan, Y., Xia, X., He, X., & Zhang, W. (2023). An innovative
design of integrative polyaniline/carbon foam flexible electrode material with
improved electrochemical performance. Materials Today Chemistry, 29, 101435.
Rumjit, N. P., Thomas, P., Lai, C. W.,
Wong, Y. H., George, V., Basilraj, P., & Johan, M. R. B. (2022). Recent
Advancements of Supercapacitor Electrode Materials Derived From Agriculture
Waste Biomass. Encyclopedia of Energy Storage, 382–397.
Salinas-Torres, D., Sieben, J.,
Lozano-Castelló, D., Cazorla-Amorós, D., & Morallón, E. (2013). Asymmetric
hybrid capacitors based on activated carbon and activated carbon fibre–PANI
electrodes. Electrochimica Acta, 89, 326–333.
Singh, G., & Arya, S. K. (2021). A
review on management of rice straw by use of cleaner technologies: Abundant
opportunities and expectations for Indian farming. Journal of Cleaner
Production, 291, 125278.
Singh, R., Srivastava, M., &
Shukla, A. (2016, February). Environmental sustainability of bioethanol
production from rice straw in India: A review. Renewable and Sustainable Energy
Reviews, 54, 202–216.
Sinha, S., Karbhal, I., Deb, M. K., Saha,
A., Nayan, R., Kurrey, R., Pervez, S., Ghosh, K. K., Thakur, S. S., Rai, M. K.,
Satnami, M. L., & Shrivas, K. (2023). Nitrogen and Sulphur co-doped
Graphene: A Robust Material for Methylene Blue Removal. Carbon Trends, 10,
100248.
Sudhan, N., Subramani, K., Karnan, M.,
Ilayaraja, N., & Sathish, M. (2016). Biomass-Derived Activated Porous
Carbon from Rice Straw for a High-Energy Symmetric Supercapacitor in Aqueous
and Non-aqueous Electrolytes. Energy & Fuels, 31(1), 977–985.
Suresh, S., Prakash, H. C., Kumar, M. S.,
& Batabyal, S. K. (2023). Manganese-doped polyaniline electrodes as
high-performance supercapacitors with superior energy density and prolonged
shelf life. Journal of Science: Advanced Materials and Devices, 8(4), 100639.
Tang, Q., Bairi, P., Shrestha, R. G.,
Hill, J. P., Ariga, K., Zeng, H., Ji, Q., & Shrestha, L. K. (2017). Quasi
2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode
Material for Electrochemical Supercapacitors. ACS Applied Materials &
Interfaces, 9(51), 44458–44465.
Thakur, A. K., Deshmukh, A. B., Choudhary,
R. B., Karbhal, I., Majumder, M., & Shelke, M. V. (2017). Facile synthesis
and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as
an electrode material for high performance supercapacitor. Materials Science
and Engineering: B, 223, 24–34.
Thejas
Prasannakumar, A., Rohith, R., Manju, V., R. Mohan, R., & J. Varma, S.
(2024). Graphene nanoflake-self stabilized dispersion polymerized PANI hybrids
as efficient, binder-free electrode materials for high-performance flexible
symmetric supercapacitors. Journal of Electroanalytical Chemistry, 952,
117952.
Vijayakumar, M., Bharathi Sankar, A., Sri
Rohita, D., Rao, T. N., & Karthik, M. (2019). Conversion of Biomass Waste
into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor
Applications. ACS Sustainable Chemistry & Engineering, 7(20), 17175–17185.
Wu, X., Zhou, K., Tian, Y., Li, Z., Ban,
Q., Liu, L., & Gai, L. (2023). Polyaniline nanosheets templated from
aniline‒acid precipitates and their electrochemical performance for flexible
supercapacitor. Electrochimica Acta, 469, 143263.
Yang, G., Li, X., Guan, Z., Tong, Y., Xu,
B., Wang, X., Wang, Z., & Chen, L. (2020). Insights into Lithium and Sodium
Storage in Porous Carbon. Nano Letters, 20(5), 3836–3843.
Yang, X., Wang, X., Lu, B., Huang, B.,
Xia, Y., & Lin, G. (2023). Biomass-derived N, S co-doped activated
carbon-polyaniline nanorod composite electrodes for high-performance
supercapacitors. Applied Surface Science, 639, 158191.
Yazar, S., Arvas, M. B., Yilmaz, S. M.,
& Sahin, Y. (2022). Effects of pyridinic N of carboxylic acid on the
polymerization of polyaniline and its supercapacitor performances. Journal of
Energy Storage, 55, 105740.
Yu, P., Li, Y., Zhao, X., Wu, L., &
Zhang, Q. (2014). Graphene-Wrapped Polyaniline Nanowire Arrays on
Nitrogen-Doped Carbon Fabric as Novel Flexible Hybrid Electrode Materials for
High-Performance Supercapacitor. Langmuir, 30(18), 5306–5313.
Yu, S., Liu, D., Zhao, S., Bao, B., Jin,
C., Huang, W., Chen, H., & Shen, Z. (2015). Synthesis of wood derived
nitrogen-doped porous carbon–polyaniline composites for supercapacitor
electrode materials. RSC Advances, 5(39), 30943–30949.
Zhi, M., Yang, F., Meng, F., Li, M.,
Manivannan, A., & Wu, N. (2014). Effects of Pore Structure on Performance
of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste
Tires. ACS Sustainable Chemistry & Engineering, 2(7), 1592–1598.
Zhou, G., Yin, J., Sun, Z., Gao, X., Zhu,
F., Zhao, P., Li, R., & Xu, J. (2020). An ultrasonic-assisted synthesis of
rice-straw-based porous carbon with high performance symmetric supercapacitors.
RSC Advances, 10(6), 3246–3255.
Zhou, X., Li, L., Dong, S., Chen, X., Han,
P., Xu, H., Yao, J., Shang, C., Liu, Z., & Cui, G. (2011). A renewable
bamboo carbon/polyaniline composite for a high-performance supercapacitor
electrode material. Journal of Solid State Electrochemistry, 16(3), 877–882.