References
Akdogan, Y.,
Junk M. J. N. and Hinderberger, D. (2011). Effect of Ionic Liquids on the Solution
Structure of Human Serum Albumin. Biomacromolecules, 12: 1072−1079.
Anand, U., Jash,
C., Boddepalli, R.K., Shrivastava, A. and Mukherjee, S. (2011). Exploring the
Mechanism of Fluorescence Quenching in Proteins Induced by Tetracycline. J.
Phys. Chem. B, 115: 6312−6320.
Bakar, K. A. and
Feroz, S. R. (2019). A critical view on the analysis of fluorescence quenching
data for determining ligand−protein binding affinity. Spectrochim. Acta, Part
A, 223: 117337
Banjare, M.K.,
Behra, K., Banjare, R.K., Sahu, R., Sharma, S., Pamdey, S., Satnami M.L. and
Ghosh, K.K. (2019). Interaction of ionic liquid with silver nanoparticles:
potential application in induced structural changes of globular proteins. ACS.
Sustainable Chem. Eng., 7: 11088–11100.
Brogan, A.P. and
Hallett, J.P. (2016). Solubilizing and Stabilizing Proteins in Anhydrous Ionic
Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs. J. Am.
Chem. Soc., 138: 4494−4501.
Chakraborty, T.;
Chakraborty, I.; Moulik, S. P.; Ghosh, S. (2009). Physicochemical and
Conformational Studies on BSA Surfactant Interaction in Aqueous Medium.
Langmuir, 25: 3062−3074.
Chevrot, G.,
Fileti E.E. and Chaban, V.V. (2015).
Enhanced Stability of the Model Mini-Protein in Amino Acid Ionic Liquids and
Their Aqueous Solutions. J. Comput. Chem., 36: 2044−2051.
Constatinescu,
D., Herrmann C. and Weing¨artner, H. (2010). Patterns of protein unfolding and
protein aggregation in ionic liquids, Phys. Chem. Chem. Phys., 12: 1756–1763.
Darlington,
D.S., Mahurin, A.N., Kapusta, K., Suh, E., Smith, C., Jarrett, E., Chism, C.M.,
Meador, W.E., Kelly, Z.C., Delcamp, J.H., Zhao, Y., Hammer, N. I., Kariyawasam,
C.S., Somarathne, R.P., Fitzkee, N.C. and Tanner, E.E.L. (2023). Selective
Near-Infrared Blood Detection Driven by Ionic Liquid–Dye–Albumin
Nanointeractions. Langmuir, 39: 10806–10819.
Das, D.K., Das,
A.K., Mandal, A.K., Mondal T. and Bhattacharyya, K. (2012). Effect of an Ionic
liquid on the Unfolding of Human Serum Albumin: A Fluorescence Correlation
Spectroscopy Study. Chem. Phys. Chem., 13: 1949-1955.
Egorova, K.S.,
Gordeev, E.G. and Ananikov, V. P. (2017). Biological Activity of Ionic Liquids
and Their Application in Pharmaceutics and Medicine. Chem. Rev., 117:
7132−7189.
Fan, J.P., Dong,
W.Y., Zhang, X.H., Yu, J.X., Huang, C.B., Deng, L.J., Chen, H.P. and Peng, H.L.
(2022). Preparation and Characterization of Protein Molecularly Imprinted Poly
(Ionic Liquid)/Calcium Alginate Composite Cryogel Membrane with High Mechanical
Strength for the Separation of Bovine Serum Albumin. Molecules, 27: 7304-7333.
Geng, F., Zheng,
L., Liu, J., Yu, L. and Tung, C. (2009). Interactions between a surface active
imidazolium ionic liquid and BSA, Colloid Polym. Sci., 287, 1253–1259.
Geng, F., Zheng,
L., Yu, L., Li, G. and Tung, C. (2010). Interaction of bovine serum albumin and
long-chain imidazolium ionic liquid measured by fluorescence spectra and
surface tension, Process Biochem., 45:
306–311.
Guria, S.,
Ghosh, A., Upadhyay, P., Das, M.K., Mishra, T., Adhikary, A. and Adhikari, S.
(2020). A Small Molecule Probe for Sensing Serum Albumin with Consequential
Self-Assembly as Fluorescent Organic Nanoparticle for Bio-Imaging and Drug
Delivery Applications, ACS Appl. Bio Mater., 5: 3099–3113.
Halder, S.;
Aggrawal, R.; Aswal, V. K.; Ray, D.; Saha, S. K. (2021). Study of refolding of
a denatured protein and microenvironment probed through FRET to a twisted
intramolecular charge transfer fluorescent biosensor molecule. J. Mol. Liq.,
322, 114532.
Herrmann, C.,
Cabrele C. and Weing¨artner, H. (2012). How ionic liquids can help to stabilize
native proteins. Phys. Chem. Chem. Phys., 14: 415–426.
Hu, Y.J., Liu,
Y., Pi Z.B. and Qu, S.S. (2005). Interaction of cromolyn sodium with human
serum albumin: a fluorescence quenching study, Bioorg. Med. Chem., 13:
6609–6614.
Hua, Y.,
Junyong, W., Guoliang, D., Aiguo, Z., Hao, C., Jianguo Y. and Denan, H.,
(2012). Interaction mechanisms of ionic liquids [Cnmim]Br (n=4, 6, 8, 10) with
bovine serum albumin. J. Lumin., 32: 622–628.
Jha, I., Kumar,
A. and Venkatesu, P. (2015). The Overriding Roles of Concentration and
Hydrophobic Effect on Structure and Stability of Heme Protein Induced by
Imidazolium-Based Ionic Liquids, J. Phys. Chem. B, 119: 26, 8357–8368.
Khachatrian,
A.A., Mukhametzyanov, A.T., Salikhov, Z.R., Safin V.M., Yakhvarov, G.D.,
Gafurov, N.Z., Garifullin, F.B., Rakipov, I.T., Mironova, A.D., Solomonov, N.B.
(2023). A good and bad aggregation: Effect of imidazolium- and cholinium-based
ionic liquids on the thermal stability of bovine serum albumin, J. Mol. Liq.,
381: 21787.
Kelly, D. and
McClements, D. J. (2003) Interactions of bovine serum albumin with ionic
surfactants in aqueous solutions. Food Hydrocolloids, 17: 73–85.
Lei, Z., Chen,
B., Koo, Y.M. and MacFarlane, D. R. (2017). Introduction: Ionic Liquids. Chem.
Rev., 117: 6633−6635.
Lim, G.S. and
Klähn, M. (2018). On the Stability of Proteins Solvated in Imidazolium-Based
Ionic Liquids Studied with Replica Exchange Molecular Dynamics. J. Phys. Chem.
B, 122: 39, 9274–9288.
Modi, R.,
Khamari, L., Nandy A. and Mukherjee, S. (2019). Spectroscopic probing of the
refolding of an unfolded protein through the formation of mixed-micelles.
Spectrochimica Acta Part A, 216: 52-60.
Mondal, S.,
Raposo, M.L., Ghosh, A., Prieto G. and Ghosh, S. (2019). Physicochemical and
conformational studies on interaction of myoglobin with an amino-acid based
anionic surfactant, sodium N-dodecanoyl sarcosinate (SDDS). Colloids Surf. A
Physicochem. Eng., 577: 167-174.
Nandi, S.,
Parui, S., Halder, R., Jana, B. and Bhattacharyya, K. (2018). Interaction of
Proteins with Ionic Liquid, Alcohol and DMSO and in situ Generation of Gold
Nano Clusters in a Cell. Biophys. Rev., 10: 757−768.
Pal, A. and
Yadav, A. (2016). Binding interactions of anesthetic drug with surface active
ionic liquid. J. Mol. Liq., 222: 471–479.
Rawat, K. and
Bohidar, H.B. (2016). Heparin-Like Native Protein Aggregate Dissociation by
1-Alkyl-3-methyl Imidazolium Chloride Ionic Liquids. Int. J. Biol. Macromol.,
73: 23−30.
Reddy, R.R.,
Saha, D., Pan, A., Aswal, V.K., Mati, S.S., Moulik, S.P. and Phani Kumar, B. V.
N. (2023). pH-Induced Biophysical Perspectives of Binding of Surface-Active
Ionic Liquid [BMIM][OSU] with HSA and Dynamics of the Formed Complex. Langmuir,
2023, 39: 3729–3741.
Shu, Y., Liu,
M., Chen, S., Chen X. and Wang, J. (2011). New Insight into Molecular
Interactions of Imidazolium Ionic Liquids with Bovine Serum Albumin. J. Phys.
Chem. B, 115, 12306−12314.
Sindhu, A.,
Bhakuni, K., Sankaranarayanan K. and Venkatesu, P. (2020). Implications of
imidazolium-based ionic liquids as refolding additives for urea-induced
denatured serum albumins, ACS Sustainable Chem. Eng., 8: 604–612
Sindhu, A.,
Kumar, S. and Venkatesu, P. (2022). Contemporary Advancement of Cholinium-Based
Ionic Liquids for Protein Stability and Long-Term Storage: Past, Present, and
Future Outlook. ACS Sustainable Chem. Eng., 10: 4323–4344.
Sindhu, A.,
Varma, R.S. and Venkatesu, P. (2022). Cholinium-Based Ionic Liquids Attenuate
the Amyloid Fibril Formation of Lysozyme: A Greener Concept of
Antiamyloidogenic Ionic Liquids. ACS Sustainable Chem. Eng., 10: 9242–9253.
Singh U. K. and
Patel, R. (2018). Dynamics of Ionic Liquid-Assisted Refolding of Denatured
Cytochrome c: A Study of Preferential Interactions toward Renaturation. Mol.
Pharmaceutics, 15: 2684−2697.
Singh, G., Kaur,
M., Singh, M., Kaur, H. and Kang, T.S. (2021). Spontaneous Fibrillation of
Bovine Serum Albumin at Physiological Temperatures Promoted by Hydrolysis-Prone
Ionic Liquids. Langmuir, 37:10319–10329.
Singh, T.,
Bharmoria, P., Morikawa, M., Kimizuka N. and Kumar, A. (2012). Ionic liquids
induced structural changes of bovine serum albumin in aqueous media: a detailed
physicochemical and spectroscopic study. J. Phys. Chem. B, 116: 11924–11935.
Singh, T.,
Boral, S., Bohidar H.B. and Kumar, A. (2010). Interaction of gelatin with room
temperature ionic liquids: a detailed physicochemical study. J. Phys. Chem. B,
114: 8441–8448.
Singh, U.K.,
Kumari, M. and Patel, R. Dynamics of Cytochrome c in Surface Active Ionic
Liquid: A Study of Preferential Interactions towards Denaturation. J. Mol.
Liq., 2018, 268, 840−848.
Umapathi, R.,
Suresh, B., Venkatesu P. and Soliman, M. E. (2017). Comprehensive Computational
and Experimental Analysis of Biomaterial toward the Behavior of
Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and
Hydrophobic Interactions. J. Phys. Chem. B, 121: 18, 4909–4922.
Van de Weert,
M.; Stella, L. Fluorescence quenching and ligand binding: A critical discussion
of a popular methodology. J. Mol. Struct., 2011, 998, 144−150.
Venkatesu, P.,
Reddy P.M. and Umapathi, R. (2015). A green approach to offset the perturbation
action of 1-butyl-3-methylimidazolium iodide on α-chymotrypsin, Phys. Chem.
Chem. Phys., 17: 184-190.
Wang, X., Liu,
J., Sun, L., Yu, L., Jiao J. and Wang, R. (2012). Interaction of bovine serum
albumin with ester-functionalized anionic surface-active ionic liquids in
aqueous solution: a detailed physicochemical and conformational, J. Phys. Chem. B, 116: 12479–12488.
Wang, X., Liu,
J., Sun, L., Yu, L., Jiao, J. and Wang, R. (2012). Interaction of Bovine Serum
Albumin with Ester-Functionalized Anionic Surface Active Ionic Liquids in
Aqueous Solution: A Detailed Physicochemical and Conformational Study. J. Phys.
Chem. B, 2012, 116: 12479–12488.
Welton, T.
(1999). Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis.
Chem. Rev., 99: 2071−2084.
Yan, H., Wu, J.,
Dai, G., Zhong, A., Chen, H., Yang J. and Han, D. (2012). Interaction
Mechanisms of Ionic Liquids [Cnmim]Br (n=4, 6, 8, 10) with Bovine Serum
Albumin. J. Lumin., 132: 622−628.