Abbas MN, Saeed AA, Singh B, Radowan AA, Dempsey E (2015). A cysteine sensor based on a gold nanoparticle-iron phthalocyanine modified graphite paste electrode, Anal. Methods, 7, 2529-2536
Agui L, Farfal CP, Sedeno PY, Pinngarron JM (2007). Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode, Talanta,74, 412-420.
Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM (2003). A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples, Talanta, 60, 1229-1238.
Anand T, Sivaraman G, Chellappa D (2014). Hg2+ mediated quinazoline ensemble for highly selective recognition of cysteine, Spectrochim. Acta A Mol. Biomol. Spectrosc. 123, 18-24.
Bamdad F, Khorram F, Samet M, Bamdad K, Sangi MR, Allahbakhshi F (2016). Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions, Spectrochim. Acta A Mol. Biomol. Spectrosc. 161, 52–57.
Chai F, Wang C, Wang T (2010). L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light, Nanotechnology, 21, 25501.
Chaichi MJ, Ehsani M, Khajvand T, Golchoubian H, Rezaee E (2014). Determination of cysteine and glutathione based on the inhibition of the dinuclear Cu(II)-catalyzed luminol–H2O2 chemiluminescence reaction, Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 405-410.
Chen S, Gao H, Shen W, Lu C, Yuan Q (2014). Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles, Sens. Actuators B Chem. 190 673-678.
Chen S, Gao H, Shen W, Lu C, Yuan Q (2014). Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles, Sens. Actuators B, 190, 673-678.
Chen Y, Qin X, Yuan C, Wang Y (2020) Switch on fluorescence mode for determination of L-cysteine with carbon quantum dots and Au nanoparticles as a probe RSC Adv., 10, 1989-1994.
Cui M, Song G, Wang C, Song Q (2015). Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI), Microchim. Acta, 182, 1371-1377.
Denga HH, Wu CL, Liu AL, Li GW, Chen W, Lin XH (2014). Colorimetric sensor for thiocyanate based on anti-aggregation ofcitrate-capped gold nanoparticles, Sens. Actuators B, 191, 479-484.
Haghnazari N, Alizadeh A, Karami C, Hamidi Z (2013). Simple optical determina-tion of silver ion in aqueous solutions using benzo crown-ether modified gold nanoparticles, Microchim Acta, 180, 287-294.
Hajizadeh S, Farhadi K, Forough M, Molaei R (2012). Silver nanoparticles in the presence of Ca2+ as a selective and sensitive probe for the colorimetric detection of cysteine, Anal. Methods, 4, 1747-1752.
Jiang Y, Zhao H, Liu YQ, Zhu NN, Ma YR, Mao LQ (2010) Angew. Chem. Int. Ed. 49, 4800-4804.
Kargosha K, Ahmadi SH, Zeeb M, Moeinossadat SR (2008). Vapour phase Fourier transform infrared spectrometric determination of l-cysteine and l-cystine, Talanta 74, 753-759.
Kataoka H, Takagi K, Makita M (1995), Determination of total plasma homocysteine and related aminothiols by gas chromatography with flame photometric detection, J. Chromatogr. B Biomed. Appl. 664, 421-425.
Khan Z, Singh T, Hussain JI, Hashmi AA (2013). Au(III)-CTAB reduction by ascorbic acid: Preparation and characterization of gold Nanoparticles, Colloids Surf. B, 104, 11-17.
Li Y, Schluesener HJ, Xu S (2010). Gold nanoparticle-based biosensors, Gold Bull. 43 29-41.
Mahendia S, Tomar AK, Goyal PK, Kumar S (2013). Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles, J. Appl. Phys. 113, 073103.
Mocanua A, Cernica I, Tomoaia G, Bobos LD, Horovitz O, Cotisel MT (2009). Self-assembly characteristics of gold nanoparticles in the presence of cysteine, Colloids and Surfaces A: Physicochem. Eng. Aspects, 338, 93-101.
Nidya M, Umadevi M, Rajkumar BJM (2014). Structural, morphological and optical studies of L-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+, Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 265-271.
Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007). Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles: Study on Heterogeneous and Homogeneous Catalytic Process, J. Phys. Chem. C, 111, 4596-4605.
Ravindran A, Mani V, Chandrasekaran N, Mukherjee A (2011). Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr3+ , Talanta, 85, 533-540.
Saha K, Agasti SS, Kim C, Li XN, Rotello VM (2012). Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112, 2739-2779.
Santhoshkumar CR, Deutsch JC, Kolhouse JC, Hassell KL, Kolhouse JF (1994). Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography-mass spectrometry and selected ion monitoring, Anal. Biochem. 220, 249-256.
Shrivas K, Sahu J, Majia P, Sinha D (2017). Label-free selective detection of ampicillin drug in human urine samples using silver nanoparticles as a colorimetric sensing probe, New J. Chem. 41, 6685-6692.
Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles, Spectrochimica Acta Part A, 71, 186-190.
Soomro RA, Nafady A, Sirajuddin, Memon N, Sherazi TH, Kalwara NH (2014). L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions, Talanta, 130, 415-422.
Xinfu M, Qingquan G, Yu X, Haixiang M (2016). Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers, Chem. Phys. Lett. 652, 148-151.
Zhang J, Xu XW, Yang XR (2012). Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction, Analyst, 137, 1556-1558.