|
Aji, B. B., Huang, Y. H., Oishi,
M., Moriga, T., and Shih, S. J. (2023). Fabrication & Characterization of
Narrow-Wavelength Phosphors of Tb-Doped Yttrium-Silicon-Aluminum Oxynitride
Using Spray Pyrolysis. Ceramics, 6(4), 2307-2319.
|
|
Bakr, M., Kaynar, Ü. H.,
Ayvacikli, M., Benourdja, S., Karabulut, Y., Hammoudeh, A., & Can, N.
(2020). Synthesis and competitive luminescence quenching mechanism of Ca3Al2O6:
Ln3+ (Ln: Dy and Sm) phosphors. Materials Research
Bulletin, 132, 111010.
|
|
Babetto, L. Carlotto, S.,
Carlotto, A., Rancan, M., Bottaro, G., Armelao, L., & Casarin, M. (2020).
Multireference ab initio investigation on ground and low-lying excited
states: systematic evaluation of J–J mixing in a Eu3+ luminescent
complex. Inorganic Chemistry, 60(1), 315-324.
|
|
Banjare, G. R., Bisen, D. P.,
Brahme, N. & Belodhiya, C. (2021).
Studies on structural properties, luminescence behavior and zeta potential of
Dy3+ doped alkaline earth ortho-silicate phosphors. Materials
Science and Engineering: B, 263, 114882.
|
|
Brunold,
T. C., Gudel, H. U. & Cavalli, E. (1996). Absorption and luminescence
spectroscopy of Zn2SiO4 willemite crystals doped with
Co2+. Chemical Physics Letters, 252(1-2),
112-120.
|
|
Cho,
T. H. & Chang, H. J. (2003). Preparation and characterizations of
Zn2SiO4: Mn green phosphors. Ceramics international, 29(6),
611-618.
|
|
Chandra
Babu, B. and Buddhudu, S. (2014).
Spectral analysis of Cu2+: Zn2SiO4, Ni2+:Zn2SiO4
& Co2+:Zn2SiO4
nanocomposites by a sol–gel method. Indian Journal of Physics, 88,
631-640.
|
|
Deng,
Y., Gao, Y., Zhu, F., Zhu, B., Huang, L., & Qiu, J. (2024). Sol-gel
combustion synthesis and near-infrared luminescence of Ni2+-doped MgAl2O4
spinel phosphor. Ceramics International, 50(7),
12319-12325.
|
|
Gandhi,
V., Ganesan, R., Abdulrahman Syedahamed, H. H. & Thaiyan, M. (2014). Effect of cobalt doping
on structural, optical, and magnetic properties of ZnO nanoparticles
synthesized by coprecipitation method. The Journal of Physical
Chemistry C, 118(18), 9715-9725.
|
|
Gupta,
I., Singh, S., Bhagwan, S., & Singh, D. (2021). Rare earth (RE) doped
phosphors and their emerging applications: A review. Ceramics
international, 47(14), 19282-19303.
|
|
Hua,
Y. & Yu, J. S. (2019). Broadband near-ultraviolet excited La2Mo2O9:
Eu3+ red-emitting phosphors with high color purity for solid-state
lighting. Journal of Alloys and Compounds, 783, 969-976.
|
|
Hossain, M. K., Raihan, G. A., Akbar, M. A., Kabir Rubel,
M. H., Ahmed, M. H., Khan, M. I., Hossain, S., Sen, S.K., Jalal, M.I.E.&
El-Denglawey, A. (2022). Current applicaStions and future potential of rare
earth oxides in sustainable nuclear, radiation, and energy devices: a
review. ACS Applied Electronic Materials, 4(7),
3327-3353.
|
|
Tiwari, K., Sharma, B. G., Brahme, N., Bisen, D. P.,
Richhariya, T., Verma, A., Sahu, S. & Sinha, A. (2024). Study of
morphological, elemental, optical and excitation wavelength dependent red
photoluminescence in Eu3+ doped Li2SrSiO4 for solid state lighting. Materials
Science in Semiconductor Processing, 171, 107997.
|
|
Maske, R. T., Yerpude, A. N., Wandhare, R. S., Nande, A.,
& Dhoble, S. J. (2023). Combustion synthesized novel SrAlBO4:
Eu3+ phosphor: structural, luminescence, and Judd-Ofelt
analysis. Optical Materials, 141, 113893.
|
|
Mbule,
P. S., Mothudi, B. M. & Dhlamini,
M. S. (2017). Mn2+-Eu3+-Dy3+ doped and
co-doped Zn2SiO4 nanophosphors: Study of the structure,
photoluminescence and surface properties. Journal of Luminescence, 192,
853-859.
|
|
Muralimanohar,
P., Srilatha, G., Sathyamoorthy, K., Vinothkumar, P., Mohapatra, M. &
Murugasen, P. (2021). Preparation and luminescence properties of Dy3+
doped BaAlBO3F2 glass ceramic phosphor for solid state
white LEDs. Optik, 225, 165807.
|
|
Omri,
K. & El Mir, L. (2016). In-situ
sol–gel synthesis of luminescent Mn2+-doped zinc silicate
nanophosphor. Journal of Materials Science: Materials in Electronics, 27,
9476-9482.
|
|
Omar,
N. A. S., Fen, Y. W., Matori, K. A., Zaid, M. H. M., Norhafizah, M. R.,
Nurzilla, M. & Zamratul, M. I. M. (2016). Synthesis and optical
properties of europium doped zinc silicate prepared using low cost solid
state reaction method. Journal of Materials Science: Materials in
Electronics, 27, 1092-1099.
|
|
Peng,
T., Yang, H., Pu, X., Hu, B., Jiang, Z. &
Yan, C. (2004). Combustion synthesis and photoluminescence of SrAl2O4:
Eu, Dy phosphor nanoparticles. Materials letters, 58(3-4),
352-356.
|
|
Rasdi,
N. M., Fen, Y. W., Omar, N. A. S. & Zaid, M. H. M. (2017). Effects of
cobalt doping on structural, morphological, and optical properties of Zn2SiO4
nanophosphors prepared by sol-gel method. Results in physics, 7,
3820-3825.
|
|
Ren,
Q., Zhao, Y., Wu, X., Du, L., Pei, M. and Hai, O. (2021). Luminescence
properties and energy transfer of color-tunable LaAl2.03B4O10.
54: Tm3+, Dy3+ phosphors. Polyhedron, 204,
115266.
|
|
Rao,
D. S., Raju, P. S., Rao, B. S. & Murthy, K. V. R. (2014). Luminescent
studies of Zn2SiO4Mn (1.1%), Eu(1.5%)
phosphor. Int. J. Lumin. Its Appl, 4, 104-106.
|
|
Samsudin,
N. F., Matori, K. A., Liew, J. Y. C., Wing Fen, Y., Mohd Zaid, M. H. &
Nadakkavil Alassan, Z. (2015). Investigation on structural and optical
properties of willemite doped Mn2+ based glass-ceramics prepared
by conventional solid-state method. Journal of Spectroscopy, 2015(1),
730753.
|
|
Sivakumar,
V., Lakshmanan, A., Kalpana, S., Rani, R. S., Kumar, R. S. & Jose, M. T. (2012). Low-temperature
synthesis of Zn2SiO4: Mn green photoluminescence
phosphor. Journal of luminescence, 132(8), 1917-1920.
|
|
Sohn,
K. S., Cho, B., Park, H. D., Choi, Y. G., & Kim, K. H. (2000). Effect of heat treatment
on photoluminescence behavior of Zn2SiO4: Mn
phosphors. Journal of the European Ceramic Society, 20(8),
1043-1051.
|
|
Tarafder, A., Molla, A. R.,
Mukhopadhyay, S. & Karmakar, B. (2014). Fabrication and enhanced
photoluminescence properties of Sm3+-doped ZnO–Al2O3B2O3SiO2
glass derived willemite glass–ceramic nanocomposites. Optical
Materials, 36(9), 1463-1470.
|
|
Wahab, S. A. A., Matori, K. A.,
Zaid, M. H. M., Kechik, M. M. A., Effendy, N. & Khaidir, R. E. M. (2023).
Blue emission: Optical properties of Co2+ doping towards Zn2SiO4
glass-ceramics. Optik, 274, 170528.
|
|
Xu, G. Q., Xu, H. T., Zheng, Z. X.
& Wu, Y. C. (2010). Preparation and characterization of Zn2SiO4:
Mn phosphors with hydrothermal methods. Journal of luminescence, 130(10),
1717-1720.
|
|
Zeng, J. H., Fu, H.
L., Lou, T. J., Yu, Y., Sun, Y. H. & Li, D. Y. (2009). Precursor, base
concentration and solvent behavior on the formation of zinc silicate. Materials
Research Bulletin, 44(5), 1106-1110.
|
|
Zhang, Q., Wang, X.,
Ding, X. & Wang, Y. (2017). A potential red-emitting phosphor BaZrGe3O9:
Eu3+ for WLED and FED applications: synthesis, structure, and
luminescence properties. Inorganic chemistry, 56(12),
6990-6998.
|