Abstract View

Author(s): Suprit D Saoji, Aniket Rode, Vikas Saoji, Veena S Belgamwar

Email(s): vbelgamwar@gmail.com

Address: Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur - 440 033, India.

Published In:   Volume - 29,      Issue - 1,     Year - 2016

DOI: Not Available

ABSTRACT:
The aim of present investigation is to enhance the solubility and dissolution behaviour of poorly soluble drug simvastatin. The simvastatin-phospholipid complex (SPC) was prepared using a modified solvent evaporation method. A circumscribed central composite design was used to analyze, and optimize the formulation and the process variables to obtain acceptable simvastatin-phospholipid complex (SPC). The influence of phospholipid-to-drug ratio (X1, w: w), reaction temperature (X,"C) and the reaction time (X, h) on the entrapment efficiency of simvastatin in SPC were evaluated. The prepared SPC was then characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). Additionally, the SPC was evaluated for apparent aqueous solubility, and in-vitro release of simvastatin. The optimum conditions identified to obtain a high efficiency SPC were, phospholipid-to-drug ratio of 3:1, the reaction temperature of 60°C, and a reaction time of 3 hours. The SEM images indicated that SPC was composed of irregular size vesicles of hydrogenated soy phosphatidylcholine, and simvastatin intercalated in the lipid layers. The results showed that formulation of SPC significantly increased the aqueous solubility of simvastatin. Additionally, the in-vitro dissolution results showed that, at the end of 8 hours, free simvastatin showed about 16% release; whereas, the drug release from SPC was over 98%. This increase in solubility and the dissolution characteristics of the complex may be explained by the amphiphilic nature of the complex, as well as possible amorphization of the drug by the phospholipid. The prepared SPC showed a significant (27 fold) enhancement in the apparent aqueous solubility, as well as the dissolution behavior of simvastatin. Drug-phospholipid complexes can serve as a potential alternative strategy for enhancing the aqueous solubility of poorly water soluble drugs such as simvastatin.

Cite this article:
Saoji, Rode, Saoji and Belgamwar (2016). Solubility and Dissolution Rate Improvement of Simvastatin via Phospholipid Complexation. Journal of Ravishankar University (Part-B: Science), 29(1), pp.146-147.


References not available.

Related Images:



Recent Images



Performance Evaluation of Spectrogram Based Epilepsy Detection Techniques Using Gray Scale Features
Perovskite Solar Cells an Efficient, Low Cost, Emerging Photovoltaic Technology
Spectrophotometric Determination of Phenthoate in Vegetables and Fruit Samples of Kabirdham (Chhattisgarh)
Flotation-Dissolution-Spectrophotometric Determination of Phorate in Various Environmental Samples
Preparation, Fabrication and Characterization of Sol-Gel ZnO Thin Films for Organic Solar Cells
Distribution of Some Selected Surface Active Agents (SAAs) in the Aquatic and Global Environment with Their Toxic Impact: A Comprehensive Review
Intriguing Clinical and Pharmaceutical Applications of IERs: A Mini Review
Soil Contamination in the Industrial Vicinity of Bemetara and Raipur District of Chhattisgarh, India
An Extractive Spectrophotometric Method for the Determination of Pymetrozine in Various Ecological Samples of Bilaspur District (C.G.)
Development and Characterization of Quercetin Loaded Nanoparticle for Skin Cancer

Tags


Recomonded Articles:

Author(s): AR Sood and RC Rathor

DOI:         Access: Open Access Read More

Author(s): JK Nandagawe; PK Patil; RD Lawangar-Pawer

DOI:         Access: Open Access Read More

Author(s): D.K. Sen; S. Bhushan

DOI:         Access: Open Access Read More

Author(s): R.Singh; U.C. Singh

DOI:         Access: Open Access Read More

Author(s): R. Sridhar; U.C. Singh

DOI:         Access: Open Access Read More

Author(s): Rakesh Gupta; Adarsh Kumar Mogha

DOI:         Access: Open Access Read More

Author(s): R. Sirmour; M.L. Naik; M.P. Goutam

DOI:         Access: Open Access Read More

Author(s): Swarnlata Saraf; Shailendra Saraf

DOI:         Access: Open Access Read More

Author(s): Swarnlata Saraf; Shailendra Sarafp; Shikha Srivastava

DOI:         Access: Open Access Read More

Author(s): A.B. Soni; A.K. Dwivedi; H. Kumar

DOI:         Access: Open Access Read More

Author(s): Rashmi Swami; Sanjay Tiwari

DOI:         Access: Open Access Read More

Author(s): Armiya Sultan; Saba Taj; Vivek Choudhary; Arti Parganiha

DOI: 10.52228/JRUB.2017-30-1-14         Access: Open Access Read More

Author(s): Lovina Dhir; B.D. Diwan; G.L. Mundhara

DOI:         Access: Open Access Read More