Abstract View

Author(s): Neha Mandle

Email(s): nehamandle1996@gmail.com

Address: Shri Shankaracharya College of Pharmaceutical Sciences, A constituent college of Shri Shankaracharya Professional University, Bhilai.
*Corresponding Author: nehamandle1996@gmail.com

Published In:   Volume - 37,      Issue - 1,     Year - 2024

DOI: 10.52228/JRUB.2024-37-1-9  

The cornea, orbit, and other ocular tissues may get infected by fungi. Ophthalmic mycoses, often known as ocular fungal infections, are a significant cause of morbidity and blindness. For fungus infections, a brand-new azole derivative has been authorized. New immunological techniques would also be beneficial in the future for enhancing patient outcomes. Treatment of ocular illnesses presents a significant barrier in terms of getting medications into the eyes using traditional drug delivery methods, such as solutions. The main barriers are those between blood and the eyes, between lachrymal fluid and the eyes, and between medication losses from the ocular surface brought on by lachrymal fluid secretion. To increase the bioavailability and lengthen the residence duration of medications administered topically to the eye, a variety of ocular drug delivery carriers have been developed. The microemulsion is created using the PHASE TITRATION METHOD. Due to the dual hydrophilic and lipophilic properties of microemulsions, the loaded medications can diffuse passively and become significantly partitioned in the varying lipophilic-hydrophilic ocular barrier. This abstract will provide details on the microemulsions used to treat fungal infections of the eyes.

Cite this article:
Mandle (2024). Microemulsion as Novel Drug Delivery for Fungal Eye Infection. Journal of Ravishankar University (Part-B: Science), 37(1), pp. 141-151. DOI:DOI: https://doi.org/10.52228/JRUB.2024-37-1-9


1.     CDC. Fungal Diseases. 2014. www.cdc.gov/fungal/ diseases/index.html. Accessed September 9, 2018.

2.     Collier, S., Gronostaj, M., MacGurn, A., Cope, J., Yoder, J., and Beach, M. Estimated Burden of Keratitis—United States, 2010. MMWR. 63:1027–1030, 2014.

3.     Patil, A., Lakhani, P., Taskar, P., et al. Formulation development, optimization, and in vitro-in vivo characterization of natamycin-loaded PEGylated nano-lipid carriers for ocular applications. J. Pharm. Sci. 107:2160–2171, 2018.

4.     Noor, S.S.M., Michael, K., Marshall, S., and Ren, J. Spatial and spectral analysis of corneal epithelium injury using hyperspectral images. In: Second International Conference on Robotics and Machine Vision: Bellingham, WA: SPIE; 2017; p. 11

5.     Gaudana, R., Ananthula, H.K., Parenky, A., and Mitra, A.K. Ocular drug delivery. AAPS J. 12:348–360, 2010.

6.      Le Bourdais, C., Acar, L., Zia, H., Sado, P.A., Needham, T., and Leverage, R. Ophthalmic drug delivery systems—recent advances. Prog. Retin. Eye Res. 17:33–58, 199

7.     U¨stu¨ndag-Okur, N., Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨ ., and Ertan, G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Therapeut. 30:319–332, 2014.

8.      Cholkar, K., Patel, S.P., Vadlapudi, A.D., and Mitra, A.K. Novel strategies for anterior segment ocular drug delivery. J. Ocul. Pharmacol. Therapeut. 29:106–123, 2013.

9.     Zhang, W., Prausnitz, M.R., and Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release. 99:241–258, 2004.

10.  Go¨kc¸e, E.H., Sandri, G., Eg˘rilmez, S., Bonferoni, M.C., Gu¨neri, T., and Caramella, C. Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr. Eye Res. 34:996–1003, 2009.

11.  Boddu, S.H., Bonam, S.P., and Jung, R. Development and characterization of a ricinoleic acid poloxamer gel system for transdermal eyelid delivery. Drug. Dev. Ind. Pharm. 41: 605–612, 2015. 8

12.  Agarwal, S., Agarwal, A., and Apple, D.J. Textbook of Ophthalmology. New Delhi, India: Jaypee Brothers Publishers; 2000.

13.  Gote, V., Sikder, S., Sicotte, J., and Pal, D. Ocular drug delivery: present innovations and future challenges. J. Pharmacol. Exp. Ther. 370:602–624, 2019.

14.  Nagarwal, R.C., Kant, S., Singh, P.N., Maiti, P., and Pandit, J.K. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J. Control. Release. 136:2– 13, 2009.

15.   Souto, E.B., Dias-Ferreira, J., Lo´pez-Machado, A., et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 11:460, 2019.

16.   Willoughby, C.E., Ponzin, D., Ferrari, S., Lobo, A., Landau, K., and Omidi, Y. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function - a review. Clin. Exp. Ophthalmol. 38:2–11, 2010.

17.  review. Br J Ophthalmol. 2008;92:466–468.

18.   Lamaris GA, Esmaeli B, Chamilos G, et al. Fungal endophthalmitis in a tertiary care cancer center: A review of 23 cases. Eur J Clin Microbiol Infect Dis. 2008;27:343–347.

19.   Smith SR, Kroll AJ, Lou PL, et al. Endogenous bacterial and fungal endophthalmitis. Int Ophthalmol Clin. 2007;47:173–183.

20.  Behlau I, Baker AS. Fungal infections and the eye. In: Albert DM, Jakobiec FA, Azar DT, Gragoudas ES (Eds.). Principles and Practice in Opthalmology, 2nd ed. Philadelphia: Saunders, 1999; Vol 5.

21.   Valluri S, Moorthy RS. Fungal endophthalmitis: Candidiasis, aspergillosis and coccidioidomycosis. In: Yanoff M, Duker JS (Eds.). Ophthalmology, 3rd ed. Mosby, Elsevier, China. 2009; pp. 824–827. Ozeki S, Urgancioglu B, Ozturk S. Recurrent endogenous Candida. Ann Ophthalmol (Skokie). 2009;41:118–120.

22.   Lemley CA, Han DP. Endophthalmitis. A review of current evaluation and management. Retina. 2007;27:662–680

23.  Das, D.; Modaboyina, S.; Bhandari, A.; Agrawal, S. Lower eyelid aspergillosis infection mimicking a pyogenic granuloma in a pregnant lady. BMJ Case Rep. 2020, 13, e238732.

24.  Garg, P.; Roy, A.; Roy, S. Update on fungal keratitis. Curr. Opin. Ophthalmol. 2016, 27, 333–339. [CrossRef]

25.  Mills, B.; Radhakrishnan, N.; Karthikeyan Rajapandian, S.G.; Rameshkumar, G.; Lalitha, P.; Prajna, N.V. The role of fungi in fungal keratitis. Exp. Eye Res. 2021, 202, 108372

26.  Liping sun Rational design of mixed nano micelle eye drops with structural integrity investigation Volume 141, 15 March 2022, Pages 164-177

27.  C.M. Arroyo et al. Ophthalmic administration of a 10-fold-lower dose of conventional nanoliposome formulations caused levels of intraocular pressure similar to those induced by marketed eye drops Eur. J. Pharm. Sci. (2018)

28.  U¨stu¨ndag-Okur, N., Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨., and Ertan, G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Ther. 30:319–332, 2014

29.  Singh, M., Guzman-Aranguez, A., Hussain, A., Srinivas, C.S., and Kaur, I.P. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine. 14:465–491, 2019.

30.  Kumar, R., and Sinha, V.R. Evaluation of ocular irritation and bioavailability of voriconazole loaded microemulsion. Curr. Drug Deliv. 14:718–724, 2017

31.  U¨stu¨ndagˇ-Okur, N., Ege, M.A., and Karasulu, H.Y. Preparation and characterization of naproxen loaded microemulsion formulations for dermal application. Int. J. Pharm. 4:33–42, 2014

32.  Bharti, S.K., and Kesavan, K. Phase-transition W/O microemulsions for ocular delivery: evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul. Immunol. Inflamm. 25:463–474, 2017.

33.  Habib, F., El-Mahdy, M., and Maher, S. Microemulsions for ocular delivery: evaluation and characterization. J. Drug Deliv. Sci. Technol. 21:485–489, 2011

34.  El Agamy, H.I., and El Maghraby, G.M. Natural, and synthetic oil phase transition microemulsions for ocular delivery of tropicamide: efficacy and safety. J. Appl. Pharm. Sci. 5(Suppl 2):67–75, 2015

35.  Pakkang, N., Uraki, Y., Koda, K., Nithitanakul, M., and Charoensaeng, A. Preparation of water-in-oil microemulsion from the mixtures of castor oil and sunflower oil as a makeup remover. J. Surfactants Deterg. 21:809–816, 2018.

36.  Torres-Luna, C., Hu, N., Koolivand, A., et al. Effect of a cationic surfactant on microemulsion globules and drug release from hydrogel contact lenses. Pharmaceutics. 11: 262, 2019

37.  Kumar, R., and Sinha, V.R. Evaluation of ocular irritation and bioavailability of voriconazole loaded microemulsion. Curr. Drug Deliv. 14:718–724, 2017

38.  Hopkins Hatzopoulos, M., Eastoe, J., Dowding, P.J., and Grillo, I. Cylinder to sphere transition in reverse microemulsions: the effect of hydrotropes. J. Colloid Interface Sci. 392:304–310, 2013.

39.  ustundag-Okur, N., Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨ ., and Ertan, G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Ther. 30:319–332, 2014

40.  Habib, F., El-Mahdy, M., and Maher, S. Microemulsions for ocular delivery: evaluation and characterization. J. Drug Deliv. Sci. Technol. 21:485–489, 2011

41.  Chan, J., El Maghraby, G.M.M., Craig, J.P., and Alany, R.G. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int. J. Pharm. 328(1 SPEC. ISS.):65–71, 2007

42.  Moghimipour, E., Salimi, A., and Changizi, S. Preparation and microstructural characterization of griseofulvin microemulsions using different experimental methods: SAXS and DSC. Adv. Pharm. Bull. 7:281–289, 2017.

43.  Buyuktimkin, T. Water titration studies on microemulsions with a nonionic surfactant derived from castor oil and a series of polar oils. J. Drug Deliv. Sci. Technol. 202056, 101521.

44.  Sousa, R.P.F.d.; Braga, G.S.; Silva, R.R.d.; Leal, G.L.R.; Freitas, J.C.O.; Madera, V.S.; Garnica, A.I.C.; Curbelo, F.D.S. Formulation and Study of an Environmentally Friendly Microemulsion-Based Drilling Fluid (O/W) with Pine Oil. Energies 202114, 7981.

45.  Sole, I.; Pey, C.M.; Maestro, A.; Gonzalez, C.; Porras, M.; Solans, C.; Gutierrez, J.M. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010344, 417–423

46.  Li, P.; Pu, S.; Lin, C.; He, L.; Zhao, H.; Yang, C.; Guo, Z.; Xu, S.; Zhou, Z. Curcumin selectively induces colon cancer cell apoptosis and S cell cycle arrest by regulates Rb/E2F/p53 pathway. J. Mol. Struct. 20221263, 133180

47.  Gauthier, G.; Capron, I. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open 20214, 100036.

48.  Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 20197, 617.

49.  Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017252, 28–49

50.  Fuentes, K.; Matamala, C.; Martínez, N.; Zúñiga, R.N.; Troncoso, E. Comparative Study of Physicochemical Properties of Nanoemulsions Fabricated with Natural and Synthetic Surfactants. Processes 20219, 2002

51.  Ahari, H.; Nasiri, M. Ultrasonic Technique for Production of Nanoemulsions for Food Packaging Purposes: A Review Study. Coatings 202111, 847.

52.  Kobayashi, D.; Hiwatashi, R.; Asakura, Y.; Matsumoto, H.; Shimada, Y.; Otake, K.; Shono, A. Effects of Operational Conditions on Preparation of Oil in Water Emulsion using Ultrasound. Phys. Procedia 201570, 1043–1047.

53.  Mahadev, M.; Dubey, A.; Shetty, A. Ultrasonically Fabricated Beta-Carotene Nanoemulsion: Optimization, Characterization and Evaluation of Combinatorial Effect with Quercetin on Streptozotocin-Induced Diabetic Rat Model. Pharmaceutics 202315, 574

54.  Li, Y.; Xiang, D. Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization. PLoS ONE 201914, e0213189.

55.  Ali, H.S.M.; Ahmed, S.A.; Alqurshi, A.A.; Alalawi, A.M.; Shehata, A.M.; Alahmadi, Y.M. Boosting Tadalafil Bioavailability via Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box-Behnken Optimization and Assessment. Pharmaceutics 202214, 2592.

56.  Song, R.; Lin, Y.; Li, Z. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. Ultrason. Sonochem. 202282, 105904

57.  Borkar, S.; Yadav, V.; Dhumal, N. Nanoemulsion as Novel Drug Delivery System: Development, Characterization and Application. Asian J. Pharm. Res. Dev. 202210, 120–127.

58.  Ganesan, P.; Karthivashan, G.; Park, S.Y.; Kim, J.; Choi, D.K. Microfluidization trends in the development of nano delivery systems and applications in chronic disease treatments. Int. J. Nanomed. 201813, 6109–6121

Related Images:

Recent Images

Herbal Alternatives for Oral Health:  Mechanistic Exploration with their Market Potential
A Review on Extraction, Identification and Application of Pesticidal Active Phytoderived Metabolites
Determination of Total Dissolved Solids (TDS) of RO Purified Drinking Water Samples in Raipur
Time of the Day Variability in Pit-Building Behavior of Antlion Larvae
A Comprehensive Review of a particular Skin Injury: Pathogenesis, triggers, and current Treatment Options
Enhanced antioxidant activity in Curcuma caesia Roxb. microrhizomes treated with silver nanoparticles
Studies on the Interaction of Imidazolium Ionic Liquids with Human Serum Albumin
Basic and Advanced Logical Concept Derived from Surface Enhanced Infrared Spectroscopy (SEIRS) as Sensing Probe for Analysis of Chemical Species: A Brief Review
Soil Erosion Risk Estimation by using Semi Empirical RUSLE model: A case study of Maniyari Basin, Chhattisgarh
An Estimator of Population Variance Using Multi-Auxiliary Information


Recomonded Articles:

Author(s): Sanjay Kumar Chelak; Shailendra Saraf

DOI:         Access: Open Access Read More

Author(s): Sanjay Daharwal; Anju Anant

DOI:         Access: Open Access Read More

Author(s): Shikha Srivastava; Manju R Singh; Deependra Singh

DOI:         Access: Open Access Read More

Author(s): Amit Alexander; Ajazuddin

DOI:         Access: Open Access Read More

Author(s): Ranjit K Harwansh; Pulok K Mukherje; Rajarshi Biswas; Sayan Biswas; Shiv Bahadur

DOI:         Access: Open Access Read More

Author(s): Sanmoy Karmakar

DOI:         Access: Open Access Read More