References:
1.
CDC.
Fungal Diseases. 2014. www.cdc.gov/fungal/ diseases/index.html. Accessed
September 9, 2018.
2.
Collier,
S., Gronostaj, M., MacGurn, A., Cope, J., Yoder, J., and Beach, M. Estimated
Burden of Keratitis—United States, 2010. MMWR. 63:1027–1030, 2014.
3.
Patil,
A., Lakhani, P., Taskar, P., et al. Formulation development, optimization, and
in vitro-in vivo characterization of natamycin-loaded PEGylated nano-lipid
carriers for ocular applications. J. Pharm. Sci. 107:2160–2171, 2018.
4.
Noor,
S.S.M., Michael, K., Marshall, S., and Ren, J. Spatial and spectral analysis of
corneal epithelium injury using hyperspectral images. In: Second International
Conference on Robotics and Machine Vision: Bellingham, WA: SPIE; 2017; p. 11
5.
Gaudana,
R., Ananthula, H.K., Parenky, A., and Mitra, A.K. Ocular drug delivery. AAPS J.
12:348–360, 2010.
6.
Le Bourdais, C., Acar, L., Zia, H., Sado,
P.A., Needham, T., and Leverage, R. Ophthalmic drug delivery systems—recent
advances. Prog. Retin. Eye Res. 17:33–58, 199
7.
U¨stu¨ndag-Okur,
N., Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨ ., and Ertan, G. Novel
ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul.
Pharmacol. Therapeut. 30:319–332, 2014.
8.
Cholkar, K., Patel, S.P., Vadlapudi, A.D., and
Mitra, A.K. Novel strategies for anterior segment ocular drug delivery. J.
Ocul. Pharmacol. Therapeut. 29:106–123, 2013.
9.
Zhang,
W., Prausnitz, M.R., and Edwards, A. Model of transient drug diffusion across
cornea. J. Control. Release. 99:241–258, 2004.
10. Go¨kc¸e, E.H.,
Sandri, G., Eg˘rilmez, S., Bonferoni, M.C., Gu¨neri, T., and Caramella, C.
Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo
drug release in rabbit eyes. Curr. Eye Res. 34:996–1003, 2009.
11. Boddu, S.H.,
Bonam, S.P., and Jung, R. Development and characterization of a ricinoleic acid
poloxamer gel system for transdermal eyelid delivery. Drug. Dev. Ind. Pharm.
41: 605–612, 2015. 8
12. Agarwal, S.,
Agarwal, A., and Apple, D.J. Textbook of Ophthalmology. New Delhi, India:
Jaypee Brothers Publishers; 2000.
13. Gote, V., Sikder,
S., Sicotte, J., and Pal, D. Ocular drug delivery: present innovations and
future challenges. J. Pharmacol. Exp. Ther. 370:602–624, 2019.
14. Nagarwal, R.C.,
Kant, S., Singh, P.N., Maiti, P., and Pandit, J.K. Polymeric nanoparticulate
system: a potential approach for ocular drug delivery. J. Control. Release.
136:2– 13, 2009.
15. Souto, E.B., Dias-Ferreira, J.,
Lo´pez-Machado, A., et al. Advanced formulation approaches for ocular drug
delivery: state-of-the-art and recent patents. Pharmaceutics. 11:460, 2019.
16. Willoughby, C.E., Ponzin, D., Ferrari, S.,
Lobo, A., Landau, K., and Omidi, Y. Anatomy and physiology of the human eye:
effects of mucopolysaccharidoses disease on structure and function - a review.
Clin. Exp. Ophthalmol. 38:2–11, 2010.
17. review. Br J
Ophthalmol. 2008;92:466–468.
18. Lamaris GA, Esmaeli B, Chamilos G, et al.
Fungal endophthalmitis in a tertiary care cancer center: A review of 23 cases.
Eur J Clin Microbiol Infect Dis. 2008;27:343–347.
19. Smith SR, Kroll AJ, Lou PL, et al. Endogenous
bacterial and fungal endophthalmitis. Int Ophthalmol Clin. 2007;47:173–183.
20. Behlau I, Baker
AS. Fungal infections and the eye. In: Albert DM, Jakobiec FA, Azar DT,
Gragoudas ES (Eds.). Principles and Practice in Opthalmology, 2nd ed.
Philadelphia: Saunders, 1999; Vol 5.
21. Valluri S, Moorthy RS. Fungal endophthalmitis:
Candidiasis, aspergillosis and coccidioidomycosis. In: Yanoff M, Duker JS
(Eds.). Ophthalmology, 3rd ed. Mosby, Elsevier, China. 2009; pp. 824–827. Ozeki
S, Urgancioglu B, Ozturk S. Recurrent endogenous Candida. Ann Ophthalmol
(Skokie). 2009;41:118–120.
22. Lemley CA, Han DP. Endophthalmitis. A review
of current evaluation and management. Retina. 2007;27:662–680
23. Das, D.;
Modaboyina, S.; Bhandari, A.; Agrawal, S. Lower eyelid aspergillosis infection
mimicking a pyogenic granuloma in a pregnant lady. BMJ Case Rep. 2020, 13,
e238732.
24. Garg, P.; Roy, A.;
Roy, S. Update on fungal keratitis. Curr. Opin. Ophthalmol. 2016, 27, 333–339.
[CrossRef]
25. Mills, B.;
Radhakrishnan, N.; Karthikeyan Rajapandian, S.G.; Rameshkumar, G.; Lalitha, P.;
Prajna, N.V. The role of fungi in fungal keratitis. Exp. Eye Res. 2021, 202,
108372
26. Liping sun Rational design of mixed nano micelle eye drops with
structural integrity investigation Volume 141, 15 March
2022, Pages 164-177
27. C.M. Arroyo et al. Ophthalmic administration of a
10-fold-lower dose of conventional nanoliposome formulations caused levels of
intraocular pressure similar to those induced by marketed eye drops Eur. J. Pharm. Sci. (2018)
28. U¨stu¨ndag-Okur,
N., Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨., and Ertan, G. Novel
ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul.
Pharmacol. Ther. 30:319–332, 2014
29. Singh, M.,
Guzman-Aranguez, A., Hussain, A., Srinivas, C.S., and Kaur, I.P. Solid lipid
nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept
and in vivo safety & kinetics. Nanomedicine. 14:465–491, 2019.
30. Kumar, R., and
Sinha, V.R. Evaluation of ocular irritation and bioavailability of voriconazole
loaded microemulsion. Curr. Drug Deliv. 14:718–724, 2017
31. U¨stu¨ndagˇ-Okur,
N., Ege, M.A., and Karasulu, H.Y. Preparation and characterization of naproxen
loaded microemulsion formulations for dermal application. Int. J. Pharm.
4:33–42, 2014
32. Bharti, S.K., and
Kesavan, K. Phase-transition W/O microemulsions for ocular delivery: evaluation
of antibacterial activity in the treatment of bacterial keratitis. Ocul.
Immunol. Inflamm. 25:463–474, 2017.
33. Habib, F.,
El-Mahdy, M., and Maher, S. Microemulsions for ocular delivery: evaluation and
characterization. J. Drug Deliv. Sci. Technol. 21:485–489, 2011
34. El Agamy, H.I.,
and El Maghraby, G.M. Natural, and synthetic oil phase transition
microemulsions for ocular delivery of tropicamide: efficacy and safety. J.
Appl. Pharm. Sci. 5(Suppl 2):67–75, 2015
35. Pakkang, N.,
Uraki, Y., Koda, K., Nithitanakul, M., and Charoensaeng, A. Preparation of
water-in-oil microemulsion from the mixtures of castor oil and sunflower oil as
a makeup remover. J. Surfactants Deterg. 21:809–816, 2018.
36. Torres-Luna, C.,
Hu, N., Koolivand, A., et al. Effect of a cationic surfactant on microemulsion
globules and drug release from hydrogel contact lenses. Pharmaceutics. 11: 262,
2019
37. Kumar, R., and
Sinha, V.R. Evaluation of ocular irritation and bioavailability of voriconazole
loaded microemulsion. Curr. Drug Deliv. 14:718–724, 2017
38. Hopkins
Hatzopoulos, M., Eastoe, J., Dowding, P.J., and Grillo, I. Cylinder to sphere
transition in reverse microemulsions: the effect of hydrotropes. J. Colloid
Interface Sci. 392:304–310, 2013.
39. ustundag-Okur, N.,
Go¨kc¸e, E.H., Eg˘rilmez, S., O¨ zer, O¨ ., and Ertan, G. Novel
ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul.
Pharmacol. Ther. 30:319–332, 2014
40. Habib, F.,
El-Mahdy, M., and Maher, S. Microemulsions for ocular delivery: evaluation and
characterization. J. Drug Deliv. Sci. Technol. 21:485–489, 2011
41. Chan, J., El
Maghraby, G.M.M., Craig, J.P., and Alany, R.G. Phase transition water-in-oil
microemulsions as ocular drug delivery systems: in vitro and in vivo
evaluation. Int. J. Pharm. 328(1 SPEC. ISS.):65–71, 2007
42. Moghimipour, E.,
Salimi, A., and Changizi, S. Preparation and microstructural characterization
of griseofulvin microemulsions using different experimental methods: SAXS and
DSC. Adv. Pharm. Bull. 7:281–289, 2017.
43. Buyuktimkin, T. Water titration studies on microemulsions
with a nonionic surfactant derived from castor oil and a series of polar
oils. J. Drug Deliv. Sci. Technol. 2020, 56, 101521.
44. Sousa, R.P.F.d.; Braga, G.S.; Silva, R.R.d.; Leal,
G.L.R.; Freitas, J.C.O.; Madera, V.S.; Garnica, A.I.C.; Curbelo, F.D.S.
Formulation and Study of an Environmentally Friendly Microemulsion-Based
Drilling Fluid (O/W) with Pine Oil. Energies 2021, 14, 7981.
45. Sole, I.; Pey, C.M.; Maestro, A.; Gonzalez, C.; Porras, M.;
Solans, C.; Gutierrez, J.M. Nano-emulsions prepared by the phase inversion
composition method: Preparation variables and scale up. J. Colloid Interface Sci. 2010, 344, 417–423
46. Li, P.; Pu, S.; Lin, C.; He, L.; Zhao, H.; Yang, C.; Guo, Z.;
Xu, S.; Zhou, Z. Curcumin selectively induces colon cancer cell apoptosis and S
cell cycle arrest by regulates Rb/E2F/p53 pathway. J. Mol. Struct. 2022, 1263, 133180
47. Gauthier, G.; Capron, I. Pickering nanoemulsions: An
overview of manufacturing processes, formulations, and applications. JCIS Open 2021, 4, 100036.
48. Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.;
Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and
Cosmetics. Processes 2019, 7, 617.
49. Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia,
M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and
applications in drug delivery. J. Control.
Release 2017, 252,
28–49
50. Fuentes, K.; Matamala, C.; Martínez, N.; Zúñiga, R.N.;
Troncoso, E. Comparative Study of Physicochemical Properties of Nanoemulsions
Fabricated with Natural and Synthetic Surfactants. Processes 2021, 9, 2002
51. Ahari, H.; Nasiri, M. Ultrasonic Technique for Production
of Nanoemulsions for Food Packaging Purposes: A Review Study. Coatings 2021, 11, 847.
52. Kobayashi, D.; Hiwatashi, R.; Asakura, Y.; Matsumoto, H.;
Shimada, Y.; Otake, K.; Shono, A. Effects of Operational Conditions on
Preparation of Oil in Water Emulsion using Ultrasound. Phys. Procedia 2015, 70, 1043–1047.
53. Mahadev, M.; Dubey, A.; Shetty, A. Ultrasonically
Fabricated Beta-Carotene Nanoemulsion: Optimization, Characterization and
Evaluation of Combinatorial Effect with Quercetin on Streptozotocin-Induced
Diabetic Rat Model. Pharmaceutics 2023, 15, 574
54. Li, Y.; Xiang, D. Stability of oil-in-water emulsions
performed by ultrasound power or high-pressure homogenization. PLoS ONE 2019, 14, e0213189.
55. Ali, H.S.M.; Ahmed, S.A.; Alqurshi, A.A.; Alalawi, A.M.;
Shehata, A.M.; Alahmadi, Y.M. Boosting Tadalafil Bioavailability via
Sono-Assisted Nano-Emulsion-Based Oral Jellies: Box-Behnken Optimization and
Assessment. Pharmaceutics 2022, 14, 2592.
56. Song, R.; Lin, Y.; Li, Z. Ultrasonic-assisted preparation
of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive
stability, and anti-Escherichia coli activity. Ultrason.
Sonochem. 2022, 82,
105904
57. Borkar, S.; Yadav, V.; Dhumal, N. Nanoemulsion as Novel
Drug Delivery System: Development, Characterization and Application. Asian J. Pharm. Res. Dev. 2022, 10, 120–127.
58. Ganesan, P.; Karthivashan, G.; Park, S.Y.; Kim, J.; Choi,
D.K. Microfluidization trends in the development of nano delivery systems and
applications in chronic disease treatments. Int.
J. Nanomed. 2018, 13,
6109–6121