Abstract View

Author(s): Vikrant Singh Thakur, Kavita Thakur, Shubhrata Gupta

Email(s): kavithakur@rediffmail.com

Address: Ph. D. Scholar, Dept. of Electrical Engineering National Institute of Technology, Raipur, Chhattisgarh, India
School of Studies in Electronics Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
Department of Electrical Engineering National Institute of Technology, Raipur, Chhattisgarh, India.

Published In:   Volume - 29,      Issue - 3,     Year - 2016

DOI: Not Available

ABSTRACT:
Presently, the image and video compression are the most crucial and demanding requirements for the visual data communication due to the channel bandwidth and data storage limitations. Transform based coding using the Discrete Cosine Transform (DCT), is a popular technique for the image and video compression. However, at lower bit-rates, for the DCT based image compression, the reconstructed images suffer from several visual distortions. Edge regeneration is one of the most recent and important technique to suppress the visual distortions generated by DCT compression at lower bit-rates. This paper proposed an innovative modification of the edge regeneration technique by increasing its initial edge prediction capability under the presence of artifacts using directional fuzzy edge detection. The proposed JPEG artifacts reduction system addresses all the three types of artifacts, which are common in JPEG images: blocking, edges blurring, and aliasing. Furthermore, the proposed system enhances the quality of the JPEG compressed images via two stages. First, it removes blocking artifacts via boundary smoothing and guided filtering. Then, in the second stage, it reduces blurring and aliasing around the edges via proposed modified local edge regeneration based on directional fuzzy edge detection technique. A sound comparison of the proposed algorithm with other existing JPEG artifact removal algorithms has been also presented on the basis of the two important parameters, peak signal to noise ratio (PSNR) and mean square error (MSE). Performance evaluation illustrates that the proposed system provides maximum PSNR, minimum MSE, and hence leads to efficient JPEG artifact reduction as compared to the other state of the art algorithms.

Cite this article:
Thakur, Thakur and Gupta (2016). Directional Fuzzy Edge Detection Based Modified Edge Regeneration System for Efficient JPEG Artifacts Reduction. Journal of Ravishankar University (Part-B: Science), 29(3), pp.49-59.


References not available.

Related Images:



Recent Images



A Review on role of Congestion Control Techniques in Internet of Things
Recent Advancement in Capsule: Emerging Novel Technologies and Alternative Shell Materials for Wide Range of Therapeutic Needs
Effect of L-Dopa on cypermethrin induced reproductive conditions in female Japanese quail, Coturnix coturnix japonica
Preparation, Characterization, and Applications of Albumin Serum-Based Nanoparticles
Study of developmental stages and morphometrics of Parthenium beetle in Bastar plateau agro-climatic zone of Chhattisgarh
PANI Incorporated Fe-MOF: As an Electrode Material for Supercapacitor
Surface Modified Magnetic Nanoparticles as an Efficient Material for Wastewater Remediation: A Review
A Review on Groundwater Pollution in India and their Health Problems
Incidence of Chronic fever in Raigarh Development Block of Raigarh District, Chhattisgarh, India
Study the optimization of Dijkstra’s Algorithm

Tags


Recomonded Articles:

Author(s): S. Bera; K. Thakur; P. Vyas; .M.Thakur; A. Shrivastava

DOI: 10.52228/JRUB.2021-34-1-3         Access: Open Access Read More

Author(s): Diwakar Shukla; Jayant Dubey

DOI:         Access: Open Access Read More

Author(s): M.R. Khan; Vineeta Shukla; Richa Khetan

DOI:         Access: Open Access Read More

Author(s): Vyas Dubey; Surya Kant

DOI:         Access: Open Access Read More

Author(s): Vikrant Singh Thakur; Kavita Thakur; Shubhrata Gupta

DOI:         Access: Open Access Read More

Author(s): Sanjay Daharwal; Anju Anant

DOI:         Access: Open Access Read More

Author(s): M.R.Khan; Horilal Yadav; V. Parinita

DOI:         Access: Open Access Read More

Author(s): A.K. Bansal

DOI:         Access: Open Access Read More

Author(s): Vyas Dubey; Minal Uprety

DOI:         Access: Open Access Read More

Author(s): D. Shukla; Jayant Dubey; Manish Trivedi

DOI:         Access: Open Access Read More

Author(s): Arun K. Singh; Housila P. Singh

DOI:         Access: Open Access Read More

Author(s): O S Rathor

DOI:         Access: Open Access Read More