References
1.
Cebnan, A. and
Gracia, M. R. (1997). Variance Estimation Using Auxiliary Information: An
Almost Unbiased Multivariate Ratio Estimator. Metrika, 45, 171- 178.
2.
Das, A. K. and Tripathi, T. P. (1978). Use of Auxiliary
Information in Estimating the Finite Population Variance. Sankhya C, 40,
139-148. https://cir.nii.ac.jp/crid/1571417125041903104.
3.
Gupta, P.C. and
Adhvaryu, D. (1982): On Some Unbiased Product Type Strategies. Journal of
Indian Society of Agricultural Statistics. 34, 48-54.
4.
Isaki, T. (1983).
Variance Estimation Using Auxiliary Information. Journal of the American
Statistical Association, 78, 117-123.
5.
Olayiwola, O. M., Olawoyin, O. I. and Audu, A. (2021). New
Exponential-Type Estimators of Finite Population Variance Using Auxiliary
Information. Sri Lankan Journal of Applied Statistics, 2-22.
6.
Ray, S.K. and
Sahai, A. (1980): Efficient Families of Ratio and Product Type Estimators.
Biometrika, 67, 211-215.
7.
Rao, J. N. K.
(1969). Some Small-Sample Results in Ratio and Regression Estimation, Journal
of the Indian Statistical Association, 6, 160-168.
8.
Srivastava, R.
S., Srivastava, S. P. & Khare, B. B.
(1989). Chain Ratio Type Estimator for Ratio of Two Population Mean Using Auxiliary
Characters. Communications in Statistics- Theory and Methods, 18, 3917-3926. https://doi.org/10.1080/03610928908830131.
9.
Srivastava, S. K.
(1967). An Estimator Using Auxiliary Information in Sample Surveys Calcutta
Statistical Association Bulletin, 16, 121-132.
10.
Srivastava, S. K.
(1971). A Generalized Estimator for the Mean of a Finite Population Using Multi-auxiliary
Information, Journal of the American Statistical Association, 66, 404-407.
11.
Steel, R. G. D.
and Torrrie, J. H. (1960). Principles and Procedures of Statistics, McGraw Hill
Book Co.
12.
Sukhatme, B.V.
and Chand, L. (1977). Multivariate Ratio Type Estimators. Proceedings of
American Statistical association, Social Statistics Section, 927-931.
13.
Swain, A. (2015).
Generalized Estimator of Finite Population Variance. Journal of Statistical
Theory and Applications, 14, 45–51.
14.
Yadav S. K. and
Kadilar, C. (2014). A Two-Parameter Variance Estimator Using Auxiliary Information.
Applied
Mathematics and Computation,
226, 117–122.