Abstract View

Author(s): Deepti Tikariha Jangde, Anjali Sinha, Birendra Kumar

Email(s): birendrajangde@gmail.com

Address: Department of Chemistry, Acharya Panth Shri Grindh Muni Naam Saheb, Govt PG College, Kawardha, Kabirdham, Chhattisgarh, 491995, India.
Research Centre, Department of Chemistry, St. Thomas College Ruabandha, Bhilai India.
Department of Chemistry, Govt. Rajmata Vijiyaraje Sindhiya Kanya Mahavidyalaya Kawardha, Kabirdham, Chhattisgarh, 491995, India.

Published In:   Volume - 38,      Issue - 2,     Year - 2025

DOI: 10.52228/JRUB.2025-38-2-1  

ABSTRACT:
Nanobiotechnology has witnessed remarkable growth, driving a new wave of innovation at the intersection of nanoscience and biology. This field has enabled the design and application of nanoscale materials and devices for a wide spectrum of biological and medical challenges. Nanotechnology has rapidly evolved into a cornerstone of modern science, driving innovation across a wide range of disciplines including medicine, electronics, energy and environmental science. Recent trends highlight the development of highly functional nanomaterials, precision-engineered nanodevices and nanoscale systems with unprecedented capabilities. Advances in fabrication techniques, surface functionalization and characterization tools have enabled more efficient, targeted and sustainable applications. In the biomedical field, nanoparticles are being increasingly utilized for drug delivery, imaging and regenerative medicine. Meanwhile, in energy and environmental sectors, nanomaterials are enabling breakthroughs in solar cells, batteries, water purification, and pollution control. This review summarizes the most impactful developments in nanotechnology explores emerging applications.

Cite this article:
Jangde, Sinha and Kumar (2025). Recent Advances and Applications of Nanobiotechnology: A Comprehensive Review. Journal of Ravishankar University (Part-B: Science), 38(2), pp. 1-31. DOI:DOI: https://doi.org/10.52228/JRUB.2025-38-2-1


References

 [1]             Agha, A., Waheed, W., Stiharu, I., Nerguizian, V., Destgeer, G., Nada E.A. and Alazzam, A. (2023). A review on microfluidic- assisted nanoparticle synthesis, and their applications using multiscale simulation methods, Nanoscale Research Letters, 18 (1):18.

[2]             Alavi M., Karimi N., Safaei M. (2019). Application of Various Types of Liposomes in Drug Delivery Systems. Adv Pharm Bull., 7(1):3-9.

[3]             Alharbi, K.K. and Al-sheikh, Y. A. (2014). Role and implications of nanodiagnostics in the changing trends of clinical diagnosis, Saudi Journal of Biological Sciences, 21: 109-117.

[4]             Ali, N., Katsouli, J., Marczylo, E.L., Gant, T.W., Wright, S. and Bernardino de la Serna J. (2024). The potential impacts of micro-and-nano plastics on various organ systems in humans, Bio Medicine, 99: 104901-104919.

[5]             Altammar, K.A. (2023). A review on nanoparticles: characteristics, synthesis, applications and challenges, Frontiers in microbiology, 14:1155622-1155642.

[6]             Amani-Ghadim, A.R., Khodam, F. and Dorraji, M.S.S.(2019). ZnS quantum dots intercalated layered double hydroxide semiconductors for solar water splitting and organic pollutant degradation. J. Mater. Chem. A,7: 11408-11422.

[7]             Ameen, F., Alsamhary, K., Alabdullatif, J.A., ALNadhari, S. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi, Ecotoxicology and Environmental Safety, 213:112027-112044.

[8]             Anajwala C., Jani G., Swamy S. M. V. (2010). Current Trends of Nanotechnology for Cancer Therapy. Int. J. Pharm. Sci. Nanotechnol. 3:1043- 1056.

[9]             Avasthi A., Caro C., Pozo-Torres E., Leal M. P., García-Martín M. L.(2020) Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham). 378(3):40.

[10]         Awashra M. and Mlynarz, P. (2023). The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective, Nanoscale Advance, 5: 2674-2723.

[11]         Babu, P.J., Saranya, S., Longchar, B. and Rajasekhar, A. (2022) Nanobiotechnology-mediated sustainable agriculture and post-harvest management, Current Research in Biotechnology, 4 : 326-336.

[12]         Baer D R, Engelhard M H. (2010). XPS analysis of nanostructured materials and biological surfaces. J Electron SpectroscRelPhenom;178:415–432.

[13]         Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. and Rizzolio, F. (2020). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine, Molecules, 25:112-126.

[14]         Begines B., Ortiz T., Pérez-Aranda M., Martínez G., Merinero M., Argüelles-Arias F., Alcudia A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel), 10(7):1403.

[15]         Bezbaruah, R., Chavda, V.P., Nongrang, L., Alom, S., Deka, K., Kalita, T., Ali, F., Bhattacharjee B. and Vora, L. (2022). Nanoparticle-based delivery systems for vaccines, Vaccines (Basel), 10: 1946.

[16]         Binning G, Quate CF, Ch G. (1986). Atomic force microscope. Phys Rev Lett 56(9):930–3.

[17]         Bishnoi, A., Kumar, S. & Joshi, N. (2017). Wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites. In Microscopy methods in nanomaterials characterization 313-337.

[18]         Biswas, P., Polash, S.A., Dey, D., Kaium, Md. A., Mahmud, A.R., Yasmin, F., Baral, K.S., Islam, Md.A., Rahaman, T.I., Abdullah, A., Ema, T.I., Khan, D.A., Bibi, S., Chopra, H., Kamel, M., Najda, A., Fouda, M.M.A., Rehan, U.M., Mheidat, M., Alsaidalani, R., Abdel-Daim, M.M. and Hasan, Md.N. (2023). Advanced implications of nanotechnology in disease control and environmental perspectives. Biomedicine & Pharmacotherapy, Biomedical Pharmacother.,158:114172-11486.

[19]         Cardoso AM., Guedes JR., Cardoso AL. (2016). Recent Trends in Nanotechnology Toward CNS Diseases: Lipid-Based Nanoparticles and Exosomes for Targeted Therapeutic Delivery. Int Rev Neurobiol. 130:1-40.

[20]         Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W.J. and Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. Journal of Environmental Chemical Engineering,11: 109591.

[21]         Chavda, V.P. (2019). Nanobased Nano Drug Delivery: A Comprehensive Review, Applications of Targeted Nano Drugs and Delivery Systems, Chapter 4 (MNT), 1.

[22]         Chawre, Y., Dewangan, L., Kujur, A.K., Karbhal, I., Nagwanshi, R., Jain, V.,  Satnami, M.L. (2022). Quantum Dots and Nanohybrids and their Various Applications: A Review. Journal of Ravishankar University, Part – B, 35(1) :53-86.

[23]         Cheville, N.F., Stasko, J. (2014). Techniques in electron microscopy of animal tissue. Vet Pathol , 51(1):28–41.

[24]         Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., Hubalek, J. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research. 62(2):144-149.

[25]         Das, R. S., & Agrawal, Y. K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vibrational spectroscopy, 57(2): 163-176.

[26]         Delgado, A.V., Gonzalez-Caballero, H.R.J., Koopal, L.K., Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci, 309(2):194–224.

[27]         Dhakad, G.S., Ranjeet, A., Kushwah, M.S., Yadav, J.S. (2017). Nanotechnology: Trends and Future Prospective. Global Journal of Bio-Science and Biotechnology. 6:548- 553.

[28]         Díez-Pascual, A.M. (2021). Carbon-Based Nanomaterials. Int J Mol Sci. 22(14):7726.

[29]         Dumitru, B., Ziya, B.G., Tenreiro, J.A. (2009). New trends in nanotechnology and fractional calculus applications. Springer Dordrecht. pp-978.

[30]         Duran, N., Simoes, M.B., de Moraes, A.C.M., Favaro, W.J. and Seabra, A.B. (2016). Nanobiotechnology of Carbon Dots: A Review. J. Biomedical Nanotechnology, 12: 1323-1347.

[31]         Elsabahy, M., Heo, G.S., Lim, S.M., Sun, G., Wooley, K.L. (2015). Polymeric Nanostructures for Imaging and Therapy. Chem Rev;115(19):10967-11011.

[32]         Fan, Y. and Moon, J.J. (2015). Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy, Vaccines, 3 :662-685.

[33]         Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M. and Hamblin, M.R. (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities, Nanomedicine, 93-126.

[34]         Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M. and Hamblin, M.R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities, Nanomedicine (Lond).,14: 93-124.

[35]         Fatehi, L., Wolf, S.M., Ramachandran, G. and Kuzma, J. (2011). Introduction: designing nanobiotechnology oversight, J. Nanoparticle Research, 13:1341-1343.

[36]         Ganji, D.D. and Kachap, S.H.H. (2015). Application of Nonlinear systems in Nanomechanics and Nanofluids, 1.

[37]         Gebreyohannes, G., Nyerere, A., Bii, C. and Berhe Sbhatu, D. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5:e02192-02199.

[38]         Ghasemiyeh, P., Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci., 13(4):288-303.

[39]         Ghormade, V., Deshpande, M.V. and Paknikar, K.M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants, Biotechnology Advances, 29:792-803.

[40]         Gidwani, B., Sahu, V., Shukla, S.S., Pandey, R., Joshi, V., Jain, V.K and Vyas, A. (2021). Journal Drug Delivery Technology, 61:1020308.

[41]         Gioacchino, M.D., Petrarca, C., Gatta, A., Scarano, G., Farinelli, A., Valle, L.D., Lumaca, A., Biondo, P.D., Paganelli, R. and Giampaolo, L.D. (2020). Nanoparticle-based immunotherapy: state of the art and future perspectives, Expert Review of Clinical Immunology,16:513-525.

[42]         Giustini, A.J., Petryk, A.A., Cassim, S.M., Tate, J.A., Baker, I., Hoopes, P.J. (2010). magnetic nanoparticle hyperhermiain  cancer treatment. Nano Life. 1(2):10.

[43]         Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C., Lifshin, E. (1981). Scanning electron microscopy and X-ray microanalysis. New York: Plenum Press; SBN: 978-1-4613-0491-3.

[44]         Gomes, M.E., Rodrigues, M., Domingues, R. and Reis, R.L. (2017), Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review, Tissue Eng.: 1.

[45]         Granata, C., Vettoliere, A. (2016). Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations, Physics Reports 614: 1-69.

[46]         Guerra, F.D., Attia, M.F., Whitehead D.C. and Alexis, F. (2018). Nanotechnology for environmental remediation: materials and applications, Molecules, 23: 176-199.

[47]         Gulab, K.R., Yelugu, S., Mahender, S.R. (2019). A Review Paper on Recent Trends in Bio-nanotechnology: Implications and Potentials. Nanoscience and Nanotechnology - Asia, 9(1):12-20.

[48]         Guo, K.W. (2011). Green nanotechnology of trends in future energy: a review. International Journal of Energy Research. 36(1):1-17.

[49]         Gupta, N., Bharti Rai, D., Jangid Kumar A. and Kulhari, H. (2019). Use of nanotechnology in antimicrobial therapy, Chapter 7,46:143.

[50]         Haleema, A., Javaida, M., Singh, R.P., Rabc, S., Suman, R. (2023). Applications of nanotechnology in medical field: a brief review, J. Glob. Health,7 :70.

[51]         Hidangmayum, A., Debnath, A., Guru, A., Singh, B.N., Upadhyay, S.K. and Dwivedi, P. (2023). Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants, International Journal of Environmental Science and Technology, 20:11693-11718.

[52]         Hongpan, X., Zhiyang, L. and Jin, S. (2014). Nanocarriers in Gene Therapy: A Review, Journal of Biomedical Nanotechnology, 10: 3483-3507.

[53]         Huang, L., Huang, X.H., Yang, X., Hu, J.Q., Zhu, Y.Z., Yan, P.Y., Xie, Y. (2024). Novel nano-drug delivery system for natural products and their application, Pharmacological Research, 201:107100-107116.

[54]         Hull, L.C., Farrell, D., Grodzinski, P. (2014). Highlights of recent developments and trends in cancer nanotechnology research View from NCI Alliance for Nanotechnology in Cancer. Biotechnology Advances. 32(4):666-678.

[55]         Iqbal, H.M.N., Rodriguez, A.M.V., Khandia, R., Munjal, A., Dhama, K. (2017). Recent Trends in Nanotechnology Based Drugs and Formulations for Targeted Therapeutic Delivery. Recent Pat Inflamm Allergy Drug Discov. 10(2):86-93.

[56]         Islam, T., Hasan, M.M., Awal, A., Nurunnabi, M., Ahammad, A.J.S. (2020). Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point of-Care Testing. Molecules. 25(24):5787.

[57]         Jain, K.K. (2007). Applications of nanobiotechnology in clinical diagnostics, Clinical Chemistry, 53:2002-2009.

[58]         Jain, K.K. (2008). Nanomedicine: Application of Nanobiotechnology in Medical Practice. Medical Principles and Practice. 17: 89-101.

[59]         Jain, K.K. (2019). Role of Nanobiotechnology in Drug Delivery, Drug Delivery Systems, 29: 55-73.

[60]         Jeanbart, L., Ballester, M., de Titta, A., Corthesy, P., Romero, P., Hubbell, J.A. and Swartz, M.A. (2014). Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunological Research, 2:436–447.

[61]         Joshi, M., Bhattacharya, A., Ali, W. (2008). Characterization techniques for nanotechnology application in textiles. Indian J Fibre Text Res; 33:304–17.

[62]         Joudeh, N. and Linke, D. (2022). Nanoparticle classifcation, physicochemical properties, characterization and applications: a comprehensive review for biologists, J. Nanobiotechnology, 20: 262-291.

[63]         Khan, Z. (2021). Emerging Trends in Nanotechnology. Springer Singapore. pp 978-981.

[64]         Khang, D., Carpenter, J., Wook Chun Y., Pareta, R., Webster, T.J. (2010). Nanotechnology for regenerative medicine, Biomedical Microdevices, 12: 575-587.

[65]         Korin, E., Froumin, N., Cohen, S. (2017). Surface analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS Biomater Sci Eng, 3(6):882–9.

[66]         Koshy, O., Subramanian, L., Thomas, S. (2017), Chapter 5 - Differential Scanning Calorimetry in Nanoscience and Nanotechnology Thermal and Rheological Measurement Techniques for Nanomaterials Characterization Micro and Nano Technologies pp 109-122.

[67]         Kreyling, W.G., Behnke, M.S. and Moller, W. (2006). Health implications of nanoparticles, Journal of Nanoparticle Research, 8: 543-562.

[68]         Kumalasari, M.R., Alfanaar, R. and Andreani, A.S. (2024). Gold nanoparticles (AuNPs): A versatile material for biosensor application, Talanta Open, 9 :100327-100350.

[69]         Lan, X., Masala, S. and Sargent, E.H. (2014). Charge-extraction stratergies for colloidal quantum dots photopoltaics. Nature Mater., 13: 233-240.

[70]         Leong, S.S., Ahmad, Z., Low, S.C., Camach, J., Faraudo, J., Lim, J. (2020). Unified View of Magnetic Nanoparticle Separation under Magnetophoresis. Langmuir. 36(28):8033-8055.

[71]         Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019). Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4: 1732–1748.

[72]         Lugani, Y., Sooch, B.S., Singh, P. and Kumar, S. (2021),  Nanobiotechnology applications in food sector and future innovations, Microbial Biotechnology in Food and Health,8:197-225.

[73]         Madhwani, K.P. (2013). Safe development of nanotechnology: A global challenge, Indian Journal of Occupational and Environmental Medicine, 17 :87-88.

[74]         Mahala, C., Sharma, M.D. and Basu, M.(2020). ZnO Nanosheets Decorated with Graphite-Like Carbon Nitride Quantum Dots as Photoanodes in Photoelectrochemical Water Splitting. Carbon quantum dots enhanced the activity. ACS Appl. Nano Mater., 3: 1999– 2007.

[75]         Malik, A., Khan, J.M., Alhomida, A.S., Ola, M.S., Alshehri, M.A., Ahmad, A. (2022): Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. Chemical Papers. 76(10):6073-6095.

[76]         Malik, S., Muhammad, K., Waheed, Y. (2023). Nanotechnology: A Revolution in Modern Industry. Molecules., 28(2):661.

[77]         Malik, S., Muhammad K. and Waheed, Y. (2023). Emerging Applications of Nanotechnology in Healthcare and Medicine, Molecules, 28: 6624-6654.

[78]         Mamalis, A.G. (2007), Recent advances in nanotechnology. Journal of Materials Processing Technology., 181(1):52-58.

[79]         Mao, N. (2019). Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. ,9: 12383.

[80]         Modi S., Prajapati, R., Inwati, G.K., Deepa, N., Tirth, V., Yadav, V.K., Yadav, K.K., Islam, S., Gupta, P., Kim, D.H, Joen, B.H. (2022). Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals. 12(1):39

[81]         Mogensen, K.B., Kneipp, K. (2014). Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J Phys Chem C, 118(48):28075–83.

[82]         Mohanraj, V.J., and Chen, Y. (2006). "Nanoparticles-a review." Tropical Journal of Pharmaceutical Research, 5: 561-73.

[83]         Morais, M.G., Martins, V.G., Steffens, D., Pranke, P. and Vieira, J.A. (2014). Biological Applications of Nanobiotechnology, Journal of Nanoscience and Nanotechnology,14 :1007-1017.

[84]         Morrow, K.J., Bawa, R., Wei, C. (2007). Recent advances in basic and clinical nanomedicine, Medical Clinics of North America, 91: 805-843.

[85]         Mourdikoudis, S., Pallares, R.M. Nguyen, T.K. Thanh (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 12871-12934

[86]         Movasaghi, Z., Rehman, S., & Rehman, I.U. (2007). Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews, 42(5), 493-541.

[87]         Mulvaney P. (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800.

[88]         Munoz, E.E., Farre, A., Sanchez, A., Font, X. and Gea, T. (2022). Microbial biosurfactants: a review of recent environmental applications, Bioengineered, 13: 12365-12391.

[89]         Nagamune, T. (2017). Biomolecular engineering for nanobio/ bionanotechnology, Nano Convergence, 4-60.

[90]         Nam, N.H. and Luong, N.H. (2019). Nanoparticles: Synthesis and applications Materials for Biomedical Engineering, Chapter 7211-7240.

[91]         Nitschke, M., Marangon, C. A. (2022). Microbial surfactants in nanotechnology: recent trends and applications. Crit Rev Biotechnol.42(2):294-310.

[92]         O’Keefe, M.A., Buseck, P.R., Iijima, S. (1978). Computed crystal structure images for high resolution electron microscopy. Nature 274:322–4.

[93]         Park, S.H. and You, Y. (2024). Gold nanoparticle-based colorimetric biosensing for foodborne pathogen detection, Foods, 13: 95-105.

[94]         Pasquini, A., Picotto, G.B., Pisani, M. (2005). STM carbon nanotube tips fabrication for critical dimension measurements. Sensor Actuat A,123–124:655–9.

[95]         Patel, B., Darji, P., Fnu, P.I.J., Nalla, S., Khatri, V.K., Parikh, S.A. (2024). Comprehensive Review and Insight into the Latest Advancements in Nanotechnology Biosciences Biotechnology Research Asia, 21(3):85-100.

[96]         Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Torres, M.P.R., Torres, L.S.A., Torres, L.A.D., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam S. and Shin, H.S. (2018). Nano based drug delivery systems: recent developments and future prospects, Journal of Nanobiotechnology, 16:71-104.

[97]         Pelgrift, R.Y. and Friedman A.J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance, Advanced Drug Delivery Reviews, 65:1803-1815.

[98]         Plaza, G.A., Chojniak J. and Banat, I.M. (2014). Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles, International Journal of Molecular Sciences, 15 : 13720-13737.

[99]         Radomski, A., Jurasz, P., Escolano, D.A., Drews, M., Morandi, M., Malinski T. and Radomski, M.W. (2005). Nanoparticle-induced platelet aggregation and vascular thrombosis, British Journal of Pharmacology, 146:882-893.

[100]      Rahman, A., Kang, S., Wang, W., Garg, A., Moskowitz, A.M. and Vikesland, P. (2021). Nanobiotechnology enabled approaches for wastewater based epidemiology, J.TRAC, 143: 116400-11430.

[101]      Rai, R., Alwani, S., Badea, I. (2019). Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers (Basel). 11(4):745.

[102]      Reuveni, T., Motiei, M., Romman, Z., Popovtzer, A., Popovtzer, R. (2011). Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study, International Journal of Nanomedicine, 6 : 2859-2864.

[103]      Rizvi, S.A.A. and Saleh, A.M. (2018). Applications of nanoparticle systems in drug delivery technology, Saudi Pharmaceutical Journal, 26 :64-70.

[104]      Rodrigues, T.S., da Silva, A.G.M., Camargo, P.H.C. (2019). Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A. 7(11):5857-5874.

[105]      Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004). Cancer immunotherapy: Moving beyond current vaccines. Nat Med 10:909–915.

[106]      Roy, S., Dikshit, P.K., Sherpa, K.C., Singh, A., Jacob, S., and Ajak, R.C. (2021). Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review, Journal of Environmental Management, 297:113422.

[107]      Sahdev, P., Ochyl, L.J. and Moon, J.J. (2014). Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical Research. 31:2563–2582

[108]      Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta, D.K., Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar ligh. Applied Catalysis A: General , 490: 42–49

[109]      Samal, D. (2017). Use of Nanotechnology in Food Industry: A review, International, Journal of Environment, Agriculture and Biotechnology, 2: 2456-2465.

[110]      Sargazi, S., Fatima, I., Kiani, M.H., Mohammadzadeh, V., Arshad, R., Bilal, M., Rahdarf, A., Díez-Pascual, A.M. and Behzadmehr, R. (2022). Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review, International Journal of Biological Macromolecules, 206: 115-147.

[111]      Shang, Y., Hasan, Md.K., Ahammed, G.J., Li, M., Yinand H. and Zhou, J. (2019) Applications of Nanotechnology in Plant Growth and Crop Protection: A Review, Molecules, 24:2558-2591.

[112]      Sheng, E., Lu, Y., Tan, Y., Xiao, Y., Li, Z. and Dai, Z.(2020). Ratiometric Fluorescent Quantum Dot-Based Biosensor for Chlorothalonil Detection via an InnerFilter Effect. Anal. Chem., 92:4364-4370.

[113]      Shyam S.M., Shivendu R., Nandita D., Raghvan K.M., Sabu T. (2019). Applications of Targeted Nano Drugs and Delivery Systems. Elsevier, Netherlands. pp. 297-325.

[114]      Sivakumar, M., Dasgupta, A. (2019). Selected Area Electron Diffraction, a technique for determination of crystallographic texture in nanocrystalline powder particle of Alloy 617 ODS and comparison with Precession Electron Diffraction, Materials Characterization  157: 109883.

[115]      Skoog, D.A., Holler, F.J., Crouch, S.R. (2007). Principles of instrumental analysis. 6th ed..P. 169–73 ISBN: 9780495012016.

[116]      Smith, A.M., Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 43(2):190-200.

[117]      Soni, A., Bhandari, M.P., Tripathi, G.K., Bundela, P., Khiriya, P.K., Khare P.S., Kashyap, M.K., Dey, A., Vellingiri, B., Sundaramurthy, S. A, Suresh, J.M.P., de la Lastra, (2023). Nano-biotechnology in tumour and cancerous disease: A perspective review, Journal of Cellular and Molecular Medicine, 27 :737-762.

[118]      Stetefeld, J., McKenna, S.A., Patel, T.R.(2016). Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 8(4):409–27.

[119]      Subramani, K., Sarvadaman P., Hossein H.(2012). Recent trends in diabetes treatment using nanotechnology. Digest Journal of Nanomaterials and Biostructures;7:85-95.

[120]      Sun, B., Chen, Y., Tao., Li., Zhao, H., Zhou, G., Xia, Y., Wang, H. and Zhao, Y.(2019). Nanorods Array of SnO2 Quantum Dots Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Appl. Mater. Interfaces, 11:2071–2081.

[121]      Suresh kumar, V., Daniel, S.C.G.K,  Ruckmani, K., Sivakumar, M. (2015),. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl Nanosci DOI 10.1007/s13204-015-0429-3

[122]      Taha, M., Hassan, M., Essa, S., Tartor, Y. (2013). Use of Fourier transform infrared spectroscopy (FTIR) spectroscopy for rapid and accurate identification of yeasts isolated from human and animals. Int J Vet Sci Med, 1(1):15–20.

[123]      Thangavel, G. and Thiruvengadam, S. (2014). Nanotechnology in food industry—a review, Internatiomal Journal of Chem Tech Reseach, 6 :4096-4101.

[124]      Thiruvengadam, M., Rajakumar, G. and Chung, M. (2018). Nanotechnology: current uses and future applications in the food industry, Biotech, 8:74-87.

[125]      Thomas, J.A.S., Edward, A.L., Sarah, J.H. (2016). Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles, J Vis Exp 113:52815

[126]      Usman, M., Farooqb, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H.ur, Ashraf, I. and Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities, Science of the Total Environment, 721: 137778-137784.

[127]      Villarroel-Rocha, J., Barrera, D., Sapag, K. (2014). Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination, Microporous and Mesoporous Materials 200: 68-78.

[128]      Walait, M.,  Mir, H.R.,  Noor, T.,  Rani, K.,  Aslam, J., Khalid, K.,  Azhar, Z., Saeed, M., Anwar, K., Naeem, M., Akhtar (2022), Nano-biotechnology: Current Applications and Future Scope, International Journal of Medical Research & Health Sciences, 11(9): 71-90

[129]      Weldick, P.J., Wang, A., Halbus, F. and Paunov, V.N. (2022). Emerging nanotechnologies for targeting antimicrobial resistance, Nanoscale, 14 : 4018.

[130]      Werner, P., Eichler, S., Mariani, G., Kogler, R., Skorupa, W. (1997). Investigation of CxSi defects in C implanted silicon by transmission electron microscopy. Appl Phys Lett 70:252–4.

[131]      Wolf, S., Gupta, R. and Kohlhepp, P. (2009). Gene Therapy Oversight: Lessons for Nanobiotechnology, Journal of Law, Medicine & Ethics, 37: 659-684.

[132]      Xu, R. (2008). Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology, 6(2):112–5.

[133]      Yadav, N., Gargc, V.K., Chhillard, A.K. and Rana, J.S., (2023). Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review, Plant Nano Biology, 4: 100032-10053.

[134]      Yamini, V. and Devi Rajeswari, V. (2023). Effective Bio-mediated Nanoparticles for Bioremediation of Toxic Metal Ions from Wastewater – A Review, Journal Environmental Nanotechnology, 12: 12-33.

[135]      Yang, M-L., Zhang, N., Lu, K-Q. and Xu, Y.J.(2017). Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 33: 3161–3169.

[136]      Yilmaz, G.E., Göktürk, I., Ovezova, M., Yilmaz, F., Kilic, S. and Denizli, A. (2023). Antimicrobial nanomaterials: a review. Hygiene, 3: 269-271.

[137]      Zamri, N., Siddiquee, S. (2018). Nanotechnology: Recent Trends in Food Safety, Quality and Market Analysis. Springer, pp. 283-293.

[138]      Zha, S., Liu, H., Li, H., Li, H., Wong, K. L. and Homayoun, A. (2024). Functionalized nanomaterials capable of crossing the blood–brain barrier, ACS Nano, 18:1820-1845.

[139]      Zhang, L., Webster, T.J. (2009). Nanotechnology and nanomaterials: promises for improved tissue regeneration, Nano Today, 4: 66-80.

[140]      Zia, S., Aqib, A.I., Muneer, A., Fatima, M., Atta, K., Kausar, T., Zaheer, C-N. F., Ahmad, I., Saeedand M. and Shafique, A. (2023). Insights into nanoparticles-induced neurotoxicity and cope up strategies, Frontiers in Neuroscience, 17 :1127460.

[141]      Zou, J., Fan, C., Jiang, Y., Liu, X., Zhou, W., Xu, H., Huang, L. (2021). A preliminary study on assessing the Brunauer-Emmett-Teller analysis for disordered carbonaceous materials Microporous and Mesoporous, Materials, 327:111411

[142]      Zou, X., Wu, J., Gu, J., Shen L. and Mao, L. (2019). Application of aptamers in virus detection and antiviral therapy, Frontiers in Microbiology, 10: 1462-1482.

[143]      Zuber, A., Purdey, M., Schartner, E., Forbes, C., Hoek, B., Giles, D., Abell, A., Monro, T., Ebendorff-Heidepreim, H. (2016). Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensor Actuat B, 227:117–27.

Related Images:



Recent Images



Recent Advances and Applications of Nanobiotechnology: A Comprehensive Review
The imperious traditional medicinal plants in the treatment of jaundice from Kosgi mandal, Naryanapet Dist. Telangana State
Nanostructured Lipid Carrier-Based Nanoformulations for Atopic Dermatitis: A Comprehensive Review
Formulation, Development & Characterization of Nanostructured Lipid Carrier Loaded Topical Gel for Atopic Dermatitis
Fluoride Contamination in Water of Balrampur District and its Effects on Human Health
Review on Iron Contamination in Water of Dhamtari District and its Effects on Human Health
Floristic and Ethnobotanical Study of Tikhur (Curcuma angustifolia Roxb.) in Gariaband District, Chhattisgarh
Floristic Study and Ecological Importance of Selaginella spp. (Little Club Moss) in Chhura Block of Gariaband District, Chhattisgarh, India
Study of Physio- Chemical Parameter of Kharun River and Concentration of Heavy Metal (Iron)
Nutritional Analysis of DrakshadiGhritafor Management of Karshya

Tags


Recomonded Articles:

Author(s): Swati Jain; Somesh Kumar Dewangan

DOI: 10.52228/JRUB.2021-34-1-9         Access: Open Access Read More

Author(s): Anil Kumar Verma*; Swati Sahu; Mohan Patel; Sanjay Tiwari

DOI: 10.52228/JRUB.2020-33-1-5         Access: Open Access Read More

Author(s): Reena Jamunkar; Deepak Sinha; Tarun Kumar Patle; Kamlesh Shrivas

DOI: 10.52228/JRUB.2024-37-1-10         Access: Open Access Read More

Author(s): Yogyata Chawre; Lakshita Dewangan; Ankita Beena Kujur; Indrapal Karbhal; Rekha Nagwanshi; Vishal Jain; Manmohan L. Satnami

DOI: 10.52228/JRUB.2022-35-1-7         Access: Open Access Read More

Author(s): Manish Kumar; Shubhra Sinha; Rajiv Nayan; Manmohan L. Satnami; Manas Kanti Deb; Kallol K. Ghosh; Shamsh Pervez; Kamlesh K. Shrivas; Vaibhav Dixit; Indrapal Karbhal

DOI: 10.52228/JRUB.2024-37-2-14         Access: Open Access Read More

Author(s): Richa Tembekar; Kallol K. Ghosh; Angel Minj; Abhishek Katendra

DOI: 10.52228/JRUB.2024-37-2-15         Access: Open Access Read More

Author(s): Vaibhav Dixit, Rajiv Nayan; Shubhra Sinha; Suryakant Manikpuri; Manmohan L. Satnami; Kallol K. Ghosh; Manas Kanti Deb; Shamsh Pervez; Indrapal Karbhal

DOI: 10.52228/JRUB.2023-36-2-5         Access: Open Access Read More

Author(s): Dipti Sahu; D.P. Bisen; Nameeta Brahme; Kanchan Tiwari; Aastha Sahu

DOI: 10.52228/JRUB.2023-36-1-10         Access: Open Access Read More

Author(s): Shweta Sao; Hemlata Nishad

DOI:         Access: Open Access Read More

Author(s): Ruchika Chandrakar; Amber Vyas; Narendra Kumar; Umakant Sahu; Vishal Jain

DOI: 10.52228/JRUB.2024-37-2-8         Access: Open Access Read More

Author(s): Mohammad A Rashid

DOI:         Access: Open Access Read More

Author(s): Taranjeet Kukreja; Arushi Saloki; Swarnlata Saraf

DOI: 10.52228/JRUB.2024-37-1-3         Access: Open Access Read More