References
[1]
Agha, A., Waheed, W., Stiharu, I., Nerguizian, V.,
Destgeer, G., Nada E.A. and Alazzam, A. (2023). A review on
microfluidic- assisted nanoparticle synthesis, and their applications using
multiscale simulation methods, Nanoscale Research Letters, 18 (1):18.
[2]
Alavi M., Karimi N., Safaei M. (2019). Application of
Various Types of Liposomes in Drug Delivery Systems. Adv Pharm Bull., 7(1):3-9.
[3]
Alharbi, K.K. and Al-sheikh, Y. A. (2014). Role and
implications of nanodiagnostics in the changing trends of clinical diagnosis,
Saudi Journal of Biological Sciences, 21: 109-117.
[4]
Ali, N., Katsouli, J., Marczylo, E.L., Gant, T.W.,
Wright, S. and Bernardino de la Serna J. (2024). The potential impacts of
micro-and-nano plastics on various organ systems in humans, Bio Medicine, 99:
104901-104919.
[5]
Altammar, K.A. (2023). A review on nanoparticles:
characteristics, synthesis, applications and challenges, Frontiers in
microbiology, 14:1155622-1155642.
[6]
Amani-Ghadim, A.R., Khodam, F. and Dorraji,
M.S.S.(2019). ZnS quantum dots intercalated layered double hydroxide
semiconductors for solar water splitting and organic pollutant degradation. J.
Mater. Chem. A,7: 11408-11422.
[7]
Ameen, F., Alsamhary, K., Alabdullatif, J.A.,
ALNadhari, S. (2021). A review on metal-based nanoparticles and their toxicity
to beneficial soil bacteria and fungi, Ecotoxicology and Environmental Safety,
213:112027-112044.
[8]
Anajwala C., Jani G., Swamy S. M. V. (2010). Current
Trends of Nanotechnology for Cancer Therapy. Int. J. Pharm. Sci. Nanotechnol.
3:1043- 1056.
[9]
Avasthi A., Caro C., Pozo-Torres E., Leal M. P.,
García-Martín M. L.(2020) Magnetic Nanoparticles as MRI Contrast Agents. Top
Curr Chem (Cham). 378(3):40.
[10]
Awashra M. and Mlynarz, P. (2023). The toxicity of
nanoparticles and their interaction with cells: an in vitro metabolomic
perspective, Nanoscale Advance, 5: 2674-2723.
[11]
Babu, P.J., Saranya, S., Longchar, B. and Rajasekhar,
A. (2022) Nanobiotechnology-mediated sustainable agriculture and post-harvest
management, Current Research in Biotechnology, 4 : 326-336.
[12]
Baer D R, Engelhard M H. (2010). XPS analysis of
nanostructured materials and biological surfaces. J Electron
SpectroscRelPhenom;178:415–432.
[13]
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M. and
Rizzolio, F. (2020). The history of nanoscience and nanotechnology: from
chemical–physical applications to nanomedicine, Molecules, 25:112-126.
[14]
Begines B., Ortiz T., Pérez-Aranda M., Martínez G.,
Merinero M., Argüelles-Arias F., Alcudia A. (2020). Polymeric Nanoparticles for
Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel),
10(7):1403.
[15]
Bezbaruah, R., Chavda, V.P., Nongrang, L., Alom, S.,
Deka, K., Kalita, T., Ali, F., Bhattacharjee B. and Vora, L. (2022).
Nanoparticle-based delivery systems for vaccines, Vaccines (Basel), 10: 1946.
[16]
Binning G, Quate CF, Ch G. (1986). Atomic force
microscope. Phys Rev Lett 56(9):930–3.
[17]
Bishnoi, A., Kumar, S. & Joshi, N. (2017).
Wide-angle X-ray diffraction (WXRD): technique for characterization of
nanomaterials and polymer nanocomposites. In Microscopy methods in
nanomaterials characterization 313-337.
[18]
Biswas, P., Polash, S.A., Dey, D., Kaium, Md. A.,
Mahmud, A.R., Yasmin, F., Baral, K.S., Islam, Md.A., Rahaman, T.I., Abdullah,
A., Ema, T.I., Khan, D.A., Bibi, S., Chopra, H., Kamel, M., Najda, A., Fouda,
M.M.A., Rehan, U.M., Mheidat, M., Alsaidalani, R., Abdel-Daim, M.M. and Hasan,
Md.N. (2023). Advanced implications of nanotechnology in disease control and
environmental perspectives. Biomedicine & Pharmacotherapy, Biomedical
Pharmacother.,158:114172-11486.
[19]
Cardoso AM., Guedes JR., Cardoso AL. (2016). Recent
Trends in Nanotechnology Toward CNS Diseases: Lipid-Based Nanoparticles and
Exosomes for Targeted Therapeutic Delivery. Int Rev Neurobiol. 130:1-40.
[20]
Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G.,
Chen, W.J. and Chen, S. (2023). Nanoparticle-mediated bioremediation as a
powerful weapon in the removal of environmental pollutants. Journal of
Environmental Chemical Engineering,11: 109591.
[21]
Chavda, V.P. (2019). Nanobased Nano Drug Delivery: A
Comprehensive Review, Applications of Targeted Nano Drugs and Delivery Systems,
Chapter 4 (MNT), 1.
[22]
Chawre, Y., Dewangan, L., Kujur, A.K., Karbhal, I.,
Nagwanshi, R., Jain, V., Satnami, M.L. (2022).
Quantum Dots and Nanohybrids and their Various Applications: A Review. Journal
of Ravishankar University, Part – B, 35(1) :53-86.
[23]
Cheville, N.F., Stasko, J. (2014). Techniques in
electron microscopy of animal tissue. Vet Pathol , 51(1):28–41.
[24]
Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V.,
Kizek, R., Hubalek, J. (2010). Magnetic nanoparticles and targeted drug
delivering. Pharmacological Research. 62(2):144-149.
[25]
Das, R. S., & Agrawal, Y. K. (2011). Raman
spectroscopy: Recent advancements, techniques and applications. Vibrational
spectroscopy, 57(2): 163-176.
[26]
Delgado, A.V., Gonzalez-Caballero, H.R.J., Koopal, L.K.,
Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena.
J Colloid Interface Sci, 309(2):194–224.
[27]
Dhakad, G.S., Ranjeet, A., Kushwah, M.S., Yadav, J.S.
(2017). Nanotechnology: Trends and Future Prospective. Global Journal of
Bio-Science and Biotechnology. 6:548- 553.
[28]
Díez-Pascual, A.M. (2021). Carbon-Based Nanomaterials.
Int J Mol Sci. 22(14):7726.
[29]
Dumitru, B., Ziya, B.G., Tenreiro, J.A. (2009). New
trends in nanotechnology and fractional calculus applications. Springer
Dordrecht. pp-978.
[30]
Duran, N., Simoes, M.B., de Moraes, A.C.M., Favaro,
W.J. and Seabra, A.B. (2016). Nanobiotechnology of Carbon Dots: A Review. J.
Biomedical Nanotechnology, 12: 1323-1347.
[31]
Elsabahy, M., Heo, G.S., Lim, S.M., Sun, G., Wooley,
K.L. (2015). Polymeric Nanostructures for Imaging and Therapy. Chem
Rev;115(19):10967-11011.
[32]
Fan, Y. and Moon, J.J. (2015). Nanoparticle drug
delivery systems designed to improve cancer vaccines and immunotherapy,
Vaccines, 3 :662-685.
[33]
Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A.,
Karimi, M. and Hamblin, M.R. (2019) Nanopharmaceuticals and nanomedicines
currently on the market: challenges and opportunities, Nanomedicine, 93-126.
[34]
Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A.,
Karimi, M. and Hamblin, M.R. (2019). Nanopharmaceuticals and nanomedicines
currently on the market: challenges and opportunities, Nanomedicine (Lond).,14:
93-124.
[35]
Fatehi, L., Wolf, S.M., Ramachandran, G. and Kuzma, J.
(2011). Introduction: designing nanobiotechnology oversight, J. Nanoparticle
Research, 13:1341-1343.
[36]
Ganji, D.D. and Kachap, S.H.H. (2015). Application of
Nonlinear systems in Nanomechanics and Nanofluids, 1.
[37]
Gebreyohannes, G., Nyerere, A., Bii, C. and Berhe
Sbhatu, D. (2019). Challenges of intervention, treatment, and antibiotic
resistance of biofilm-forming microorganisms. Heliyon, 5:e02192-02199.
[38]
Ghasemiyeh, P., Mohammadi-Samani, S. (2018). Solid
lipid nanoparticles and nanostructured lipid carriers as novel drug delivery
systems: applications, advantages and disadvantages. Res Pharm Sci.,
13(4):288-303.
[39]
Ghormade, V., Deshpande, M.V. and Paknikar, K.M.
(2011). Perspectives for nano-biotechnology enabled protection and nutrition of
plants, Biotechnology Advances, 29:792-803.
[40]
Gidwani, B., Sahu, V., Shukla, S.S., Pandey, R.,
Joshi, V., Jain, V.K and Vyas, A. (2021). Journal Drug Delivery Technology,
61:1020308.
[41]
Gioacchino, M.D., Petrarca, C., Gatta, A., Scarano,
G., Farinelli, A., Valle, L.D., Lumaca, A., Biondo, P.D., Paganelli, R. and
Giampaolo, L.D. (2020). Nanoparticle-based immunotherapy: state of the art and
future perspectives, Expert Review of Clinical Immunology,16:513-525.
[42]
Giustini, A.J., Petryk, A.A., Cassim, S.M., Tate, J.A.,
Baker, I., Hoopes, P.J. (2010). magnetic nanoparticle hyperhermiain cancer treatment. Nano Life. 1(2):10.
[43]
Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C.,
Fiori, C., Lifshin, E. (1981). Scanning electron microscopy and X-ray
microanalysis. New York: Plenum Press; SBN: 978-1-4613-0491-3.
[44]
Gomes, M.E., Rodrigues, M., Domingues, R. and Reis,
R.L. (2017), Tissue Engineering and Regenerative Medicine: New Trends and
Directions—A Year in Review, Tissue Eng.: 1.
[45]
Granata, C., Vettoliere, A. (2016). Nano
Superconducting Quantum Interference device: A powerful tool for nanoscale
investigations, Physics Reports 614: 1-69.
[46]
Guerra, F.D., Attia, M.F., Whitehead D.C. and Alexis,
F. (2018). Nanotechnology for environmental remediation: materials and
applications, Molecules, 23: 176-199.
[47]
Gulab, K.R., Yelugu, S., Mahender, S.R. (2019). A
Review Paper on Recent Trends in Bio-nanotechnology: Implications and
Potentials. Nanoscience and Nanotechnology - Asia, 9(1):12-20.
[48]
Guo, K.W. (2011). Green nanotechnology of trends in
future energy: a review. International Journal of Energy Research. 36(1):1-17.
[49]
Gupta, N., Bharti Rai, D., Jangid Kumar A. and
Kulhari, H. (2019). Use of nanotechnology in antimicrobial therapy, Chapter
7,46:143.
[50]
Haleema, A., Javaida, M., Singh, R.P., Rabc, S.,
Suman, R. (2023). Applications of nanotechnology in medical field: a brief
review, J. Glob. Health,7 :70.
[51]
Hidangmayum, A., Debnath, A., Guru, A., Singh, B.N.,
Upadhyay, S.K. and Dwivedi, P. (2023). Mechanistic and recent updates in
nano-bioremediation for developing green technology to alleviate agricultural
contaminants, International Journal of Environmental Science and Technology,
20:11693-11718.
[52]
Hongpan, X., Zhiyang, L. and Jin, S. (2014).
Nanocarriers in Gene Therapy: A Review, Journal of Biomedical Nanotechnology,
10: 3483-3507.
[53]
Huang, L., Huang, X.H., Yang, X., Hu, J.Q., Zhu, Y.Z.,
Yan, P.Y., Xie, Y. (2024). Novel nano-drug delivery system for natural products
and their application, Pharmacological Research, 201:107100-107116.
[54]
Hull, L.C., Farrell, D., Grodzinski, P. (2014).
Highlights of recent developments and trends in cancer nanotechnology research
View from NCI Alliance for Nanotechnology in Cancer. Biotechnology Advances.
32(4):666-678.
[55]
Iqbal, H.M.N., Rodriguez, A.M.V., Khandia, R., Munjal,
A., Dhama, K. (2017). Recent Trends in Nanotechnology Based Drugs and
Formulations for Targeted Therapeutic Delivery. Recent Pat Inflamm Allergy Drug
Discov. 10(2):86-93.
[56]
Islam, T., Hasan, M.M., Awal, A., Nurunnabi, M.,
Ahammad, A.J.S. (2020). Metal Nanoparticles for Electrochemical Sensing:
Progress and Challenges in the Clinical Transition of Point of-Care Testing.
Molecules. 25(24):5787.
[57]
Jain, K.K. (2007). Applications of nanobiotechnology
in clinical diagnostics, Clinical Chemistry, 53:2002-2009.
[58]
Jain, K.K. (2008). Nanomedicine: Application of
Nanobiotechnology in Medical Practice. Medical Principles and Practice. 17:
89-101.
[59]
Jain, K.K. (2019). Role of Nanobiotechnology in Drug
Delivery, Drug Delivery Systems, 29: 55-73.
[60]
Jeanbart, L., Ballester, M., de Titta, A., Corthesy,
P., Romero, P., Hubbell, J.A. and Swartz, M.A. (2014). Enhancing efficacy of
anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer
Immunological Research, 2:436–447.
[61]
Joshi, M., Bhattacharya, A., Ali, W. (2008).
Characterization techniques for nanotechnology application in textiles. Indian
J Fibre Text Res; 33:304–17.
[62]
Joudeh, N. and Linke, D. (2022). Nanoparticle
classifcation, physicochemical properties, characterization and applications: a
comprehensive review for biologists, J. Nanobiotechnology, 20: 262-291.
[63]
Khan, Z. (2021). Emerging Trends in Nanotechnology.
Springer Singapore. pp 978-981.
[64]
Khang, D., Carpenter, J., Wook Chun Y., Pareta, R.,
Webster, T.J. (2010). Nanotechnology for regenerative medicine, Biomedical
Microdevices, 12: 575-587.
[65]
Korin, E., Froumin, N., Cohen, S. (2017). Surface
analysis of nanocomplexes by X-ray photoelectron spectroscopy (XPS). ACS
Biomater Sci Eng, 3(6):882–9.
[66]
Koshy, O., Subramanian, L., Thomas, S. (2017), Chapter
5 - Differential Scanning Calorimetry in Nanoscience and Nanotechnology Thermal
and Rheological Measurement Techniques for Nanomaterials Characterization Micro
and Nano Technologies pp 109-122.
[67]
Kreyling, W.G., Behnke, M.S. and Moller, W. (2006).
Health implications of nanoparticles, Journal of Nanoparticle Research, 8:
543-562.
[68]
Kumalasari, M.R., Alfanaar, R. and Andreani, A.S.
(2024). Gold nanoparticles (AuNPs): A versatile material for biosensor
application, Talanta Open, 9 :100327-100350.
[69]
Lan, X., Masala, S. and Sargent, E.H. (2014).
Charge-extraction stratergies for colloidal quantum dots photopoltaics. Nature
Mater., 13: 233-240.
[70]
Leong, S.S., Ahmad, Z., Low, S.C., Camach, J., Faraudo,
J., Lim, J. (2020). Unified View of Magnetic Nanoparticle Separation under
Magnetophoresis. Langmuir. 36(28):8033-8055.
[71]
Li, M., Chen, T., Gooding, J.J. and Liu, J.(2019).
Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens., 4:
1732–1748.
[72]
Lugani, Y., Sooch, B.S., Singh, P. and Kumar, S.
(2021), Nanobiotechnology applications
in food sector and future innovations, Microbial Biotechnology in Food and
Health,8:197-225.
[73]
Madhwani, K.P. (2013). Safe development of
nanotechnology: A global challenge, Indian Journal of Occupational and
Environmental Medicine, 17 :87-88.
[74]
Mahala, C., Sharma, M.D. and Basu, M.(2020). ZnO
Nanosheets Decorated with Graphite-Like Carbon Nitride Quantum Dots as
Photoanodes in Photoelectrochemical Water Splitting. Carbon quantum dots
enhanced the activity. ACS Appl. Nano Mater., 3: 1999– 2007.
[75]
Malik, A., Khan, J.M., Alhomida, A.S., Ola, M.S.,
Alshehri, M.A., Ahmad, A. (2022): Metal nanoparticles: biomedical applications
and their molecular mechanisms of toxicity. Chemical Papers. 76(10):6073-6095.
[76]
Malik, S., Muhammad, K., Waheed, Y. (2023).
Nanotechnology: A Revolution in Modern Industry. Molecules., 28(2):661.
[77]
Malik, S., Muhammad K. and Waheed, Y. (2023). Emerging
Applications of Nanotechnology in Healthcare and Medicine, Molecules, 28:
6624-6654.
[78]
Mamalis, A.G. (2007), Recent advances in
nanotechnology. Journal of Materials Processing Technology., 181(1):52-58.
[79]
Mao, N. (2019). Investigating the Heteronjunction
between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under
visible-light irradiation. Sci. Rep. ,9: 12383.
[80]
Modi S., Prajapati, R., Inwati, G.K., Deepa, N., Tirth,
V., Yadav, V.K., Yadav, K.K., Islam, S., Gupta, P., Kim, D.H, Joen, B.H. (2022).
Recent Trends in Fascinating Applications of Nanotechnology in Allied Health
Sciences. Crystals. 12(1):39
[81]
Mogensen, K.B., Kneipp, K. (2014). Size-dependent
shifts of plasmon resonance in silver nanoparticle films using controlled
dissolution: monitoring the onset of surface screening effects. J Phys Chem C,
118(48):28075–83.
[82]
Mohanraj, V.J., and Chen, Y. (2006).
"Nanoparticles-a review." Tropical Journal of Pharmaceutical
Research, 5: 561-73.
[83]
Morais, M.G., Martins, V.G., Steffens, D., Pranke, P.
and Vieira, J.A. (2014). Biological Applications of Nanobiotechnology, Journal
of Nanoscience and Nanotechnology,14 :1007-1017.
[84]
Morrow, K.J., Bawa, R., Wei, C. (2007). Recent
advances in basic and clinical nanomedicine, Medical Clinics of North America,
91: 805-843.
[85]
Mourdikoudis, S., Pallares, R.M. Nguyen, T.K. Thanh
(2018). Characterization techniques for nanoparticles: comparison and
complementarity upon studying nanoparticle properties. Nanoscale, 10,
12871-12934
[86]
Movasaghi, Z., Rehman, S., & Rehman, I.U. (2007).
Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews, 42(5),
493-541.
[87]
Mulvaney P. (1996) Surface plasmon spectroscopy of
nanosized metal particles. Langmuir 12(3):788–800.
[88]
Munoz, E.E., Farre, A., Sanchez, A., Font, X. and Gea,
T. (2022). Microbial biosurfactants: a review of recent environmental
applications, Bioengineered, 13: 12365-12391.
[89]
Nagamune, T. (2017). Biomolecular engineering for
nanobio/ bionanotechnology, Nano Convergence, 4-60.
[90]
Nam, N.H. and Luong, N.H. (2019). Nanoparticles:
Synthesis and applications Materials for Biomedical Engineering, Chapter
7211-7240.
[91]
Nitschke, M., Marangon, C. A. (2022). Microbial
surfactants in nanotechnology: recent trends and applications. Crit Rev
Biotechnol.42(2):294-310.
[92]
O’Keefe, M.A., Buseck, P.R., Iijima, S. (1978).
Computed crystal structure images for high resolution electron microscopy.
Nature 274:322–4.
[93]
Park, S.H. and You, Y. (2024). Gold nanoparticle-based
colorimetric biosensing for foodborne pathogen detection, Foods, 13: 95-105.
[94]
Pasquini, A., Picotto, G.B., Pisani, M. (2005). STM
carbon nanotube tips fabrication for critical dimension measurements. Sensor
Actuat A,123–124:655–9.
[95]
Patel, B., Darji, P., Fnu, P.I.J., Nalla, S., Khatri,
V.K., Parikh, S.A. (2024). Comprehensive Review and Insight into the Latest
Advancements in Nanotechnology Biosciences Biotechnology Research Asia,
21(3):85-100.
[96]
Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R.,
Torres, M.P.R., Torres, L.S.A., Torres, L.A.D., Grillo, R., Swamy, M.K.,
Sharma, S., Habtemariam S. and Shin, H.S. (2018). Nano based drug delivery
systems: recent developments and future prospects, Journal of
Nanobiotechnology, 16:71-104.
[97]
Pelgrift, R.Y. and Friedman A.J. (2013).
Nanotechnology as a therapeutic tool to combat microbial resistance, Advanced
Drug Delivery Reviews, 65:1803-1815.
[98]
Plaza, G.A., Chojniak J. and Banat, I.M. (2014).
Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles,
International Journal of Molecular Sciences, 15 : 13720-13737.
[99]
Radomski, A., Jurasz, P., Escolano, D.A., Drews, M.,
Morandi, M., Malinski T. and Radomski, M.W. (2005). Nanoparticle-induced
platelet aggregation and vascular thrombosis, British Journal of Pharmacology,
146:882-893.
[100]
Rahman, A., Kang, S., Wang, W., Garg, A., Moskowitz,
A.M. and Vikesland, P. (2021). Nanobiotechnology enabled approaches for
wastewater based epidemiology, J.TRAC, 143: 116400-11430.
[101]
Rai, R., Alwani, S., Badea, I. (2019). Polymeric
Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for
Delivery Applications. Polymers (Basel). 11(4):745.
[102]
Reuveni, T., Motiei, M., Romman, Z., Popovtzer, A.,
Popovtzer, R. (2011). Targeted gold nanoparticles enable molecular CT imaging
of cancer: an in vivo study, International Journal of Nanomedicine, 6 :
2859-2864.
[103]
Rizvi, S.A.A. and Saleh, A.M. (2018). Applications of
nanoparticle systems in drug delivery technology, Saudi Pharmaceutical Journal,
26 :64-70.
[104]
Rodrigues, T.S., da Silva, A.G.M., Camargo, P.H.C.
(2019). Nanocatalysis by noble metal nanoparticles: controlled synthesis for
the optimization and understanding of activities. Journal of Materials
Chemistry A. 7(11):5857-5874.
[105]
Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004).
Cancer immunotherapy: Moving beyond current vaccines. Nat Med 10:909–915.
[106]
Roy, S., Dikshit, P.K., Sherpa, K.C., Singh, A.,
Jacob, S., and Ajak, R.C. (2021). Recent nanobiotechnological advancements in
lignocellulosic biomass valorization: A review, Journal of Environmental
Management, 297:113422.
[107]
Sahdev, P., Ochyl, L.J. and Moon, J.J. (2014).
Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical
Research. 31:2563–2582
[108]
Saikia, L., Bhuyan, D., Saikia, M., Malakar, B., Dutta,
D.K., Sengupta, P. (2015). Photocatalytic performance of ZnO nanomaterials for
self sensitized degradation of malachite green dye under solar ligh. Applied
Catalysis A: General , 490: 42–49
[109]
Samal, D. (2017). Use of Nanotechnology in Food
Industry: A review, International, Journal of Environment, Agriculture and
Biotechnology, 2: 2456-2465.
[110]
Sargazi, S., Fatima, I., Kiani, M.H., Mohammadzadeh,
V., Arshad, R., Bilal, M., Rahdarf, A., Díez-Pascual, A.M. and Behzadmehr, R.
(2022). Fluorescent-based nanosensors for selective detection of a wide range
of biological macromolecules: A comprehensive review, International Journal of
Biological Macromolecules, 206: 115-147.
[111]
Shang, Y., Hasan, Md.K., Ahammed, G.J., Li, M., Yinand
H. and Zhou, J. (2019) Applications of Nanotechnology in Plant Growth and Crop
Protection: A Review, Molecules, 24:2558-2591.
[112]
Sheng, E., Lu, Y., Tan, Y., Xiao, Y., Li, Z. and Dai,
Z.(2020). Ratiometric Fluorescent Quantum Dot-Based Biosensor for
Chlorothalonil Detection via an InnerFilter Effect. Anal. Chem., 92:4364-4370.
[113]
Shyam S.M., Shivendu R., Nandita D., Raghvan K.M.,
Sabu T. (2019). Applications of Targeted Nano Drugs and Delivery Systems.
Elsevier, Netherlands. pp. 297-325.
[114]
Sivakumar, M., Dasgupta, A. (2019). Selected Area
Electron Diffraction, a technique for determination of crystallographic texture
in nanocrystalline powder particle of Alloy 617 ODS and comparison with
Precession Electron Diffraction, Materials Characterization 157: 109883.
[115]
Skoog, D.A., Holler, F.J., Crouch, S.R. (2007).
Principles of instrumental analysis. 6th ed..P. 169–73 ISBN: 9780495012016.
[116]
Smith, A.M., Nie, S. (2010). Semiconductor
nanocrystals: structure, properties, and band gap engineering. Acc Chem Res.
43(2):190-200.
[117]
Soni, A., Bhandari, M.P., Tripathi, G.K., Bundela, P.,
Khiriya, P.K., Khare P.S., Kashyap, M.K., Dey, A., Vellingiri, B.,
Sundaramurthy, S. A, Suresh, J.M.P., de la Lastra, (2023). Nano-biotechnology
in tumour and cancerous disease: A perspective review, Journal of Cellular and
Molecular Medicine, 27 :737-762.
[118]
Stetefeld, J., McKenna, S.A., Patel, T.R.(2016).
Dynamic light scattering: a practical guide and applications in biomedical
sciences. Biophys Rev. 8(4):409–27.
[119]
Subramani, K., Sarvadaman P., Hossein H.(2012). Recent
trends in diabetes treatment using nanotechnology. Digest Journal of
Nanomaterials and Biostructures;7:85-95.
[120]
Sun, B., Chen, Y., Tao., Li., Zhao, H., Zhou, G., Xia,
Y., Wang, H. and Zhao, Y.(2019). Nanorods Array of SnO2 Quantum Dots
Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water
Splitting and Self-Rechargeable Battery-Like Applications. ACS Appl. Mater.
Interfaces, 11:2071–2081.
[121]
Suresh kumar, V., Daniel, S.C.G.K, Ruckmani, K., Sivakumar, M. (2015),.
Fabrication of chitosan–magnetite nanocomposite strip for chromium removal.
Appl Nanosci DOI 10.1007/s13204-015-0429-3
[122]
Taha, M., Hassan, M., Essa, S., Tartor, Y. (2013). Use
of Fourier transform infrared spectroscopy (FTIR) spectroscopy for rapid and
accurate identification of yeasts isolated from human and animals. Int J Vet
Sci Med, 1(1):15–20.
[123]
Thangavel, G. and Thiruvengadam, S. (2014).
Nanotechnology in food industry—a review, Internatiomal Journal of Chem Tech
Reseach, 6 :4096-4101.
[124]
Thiruvengadam, M., Rajakumar, G. and Chung, M. (2018).
Nanotechnology: current uses and future applications in the food industry,
Biotech, 8:74-87.
[125]
Thomas, J.A.S., Edward, A.L., Sarah, J.H. (2016).
Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual
Nanoparticles, J Vis Exp 113:52815
[126]
Usman, M., Farooqb, M., Wakeel, A., Nawaz, A., Cheema,
S.A., Rehman, H.ur, Ashraf, I. and Sanaullah, M. (2020). Nanotechnology in
agriculture: Current status, challenges and future opportunities, Science of
the Total Environment, 721: 137778-137784.
[127]
Villarroel-Rocha, J., Barrera, D., Sapag, K. (2014).
Introducing a self-consistent test and the corresponding modification in the
Barrett, Joyner and Halenda method for pore-size determination, Microporous and
Mesoporous Materials 200: 68-78.
[128]
Walait, M., Mir,
H.R., Noor, T., Rani, K.,
Aslam, J., Khalid, K., Azhar, Z.,
Saeed, M., Anwar, K., Naeem, M., Akhtar (2022), Nano-biotechnology: Current
Applications and Future Scope, International Journal of Medical Research &
Health Sciences, 11(9): 71-90
[129]
Weldick, P.J., Wang, A., Halbus, F. and Paunov, V.N.
(2022). Emerging nanotechnologies for targeting antimicrobial resistance,
Nanoscale, 14 : 4018.
[130]
Werner, P., Eichler, S., Mariani, G., Kogler, R.,
Skorupa, W. (1997). Investigation of CxSi defects in C implanted silicon by
transmission electron microscopy. Appl Phys Lett 70:252–4.
[131]
Wolf, S., Gupta, R. and Kohlhepp, P. (2009). Gene
Therapy Oversight: Lessons for Nanobiotechnology, Journal of Law, Medicine
& Ethics, 37: 659-684.
[132]
Xu, R. (2008). Progress in nanoparticles
characterization: sizing and zeta potential measurement. Particuology,
6(2):112–5.
[133]
Yadav, N., Gargc, V.K., Chhillard, A.K. and Rana,
J.S., (2023). Recent advances in nanotechnology for the improvement of
conventional agricultural systems: A review, Plant Nano Biology, 4:
100032-10053.
[134]
Yamini, V. and Devi Rajeswari, V. (2023). Effective
Bio-mediated Nanoparticles for Bioremediation of Toxic Metal Ions from
Wastewater – A Review, Journal Environmental Nanotechnology, 12: 12-33.
[135]
Yang, M-L., Zhang, N., Lu, K-Q. and Xu, Y.J.(2017).
Insight into the Role of Size Modulation on Tuning the Band Gap and
Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir,
33: 3161–3169.
[136]
Yilmaz, G.E., Göktürk, I., Ovezova, M., Yilmaz, F.,
Kilic, S. and Denizli, A. (2023). Antimicrobial nanomaterials: a review.
Hygiene, 3: 269-271.
[137]
Zamri, N., Siddiquee, S. (2018). Nanotechnology:
Recent Trends in Food Safety, Quality and Market Analysis. Springer, pp.
283-293.
[138]
Zha, S., Liu, H., Li, H., Li, H., Wong, K. L. and
Homayoun, A. (2024). Functionalized nanomaterials capable of crossing the
blood–brain barrier, ACS Nano, 18:1820-1845.
[139]
Zhang, L., Webster, T.J. (2009). Nanotechnology and
nanomaterials: promises for improved tissue regeneration, Nano Today, 4: 66-80.
[140]
Zia, S., Aqib, A.I., Muneer, A., Fatima, M., Atta, K.,
Kausar, T., Zaheer, C-N. F., Ahmad, I., Saeedand M. and Shafique, A. (2023).
Insights into nanoparticles-induced neurotoxicity and cope up strategies,
Frontiers in Neuroscience, 17 :1127460.
[141]
Zou, J., Fan, C., Jiang, Y., Liu, X., Zhou, W., Xu, H.,
Huang, L. (2021). A preliminary study on assessing the Brunauer-Emmett-Teller
analysis for disordered carbonaceous materials Microporous and Mesoporous,
Materials, 327:111411
[142]
Zou, X., Wu, J., Gu, J., Shen L. and Mao, L. (2019).
Application of aptamers in virus detection and antiviral therapy, Frontiers in
Microbiology, 10: 1462-1482.
[143]
Zuber, A., Purdey, M., Schartner, E., Forbes, C., Hoek,
B., Giles, D., Abell, A., Monro, T., Ebendorff-Heidepreim, H. (2016). Detection
of gold nanoparticles with different sizes using absorption and fluorescence
based method. Sensor Actuat B, 227:117–27.