References
1. Dai
Y., spronsen J.V., Witkamp G., Verpoorte R., Choi Y.H., (2013). Natural deep
eutectic solvents as new potential media for green technology. Anal. Chim. Acta
766,61-68. https://doi.org/10.1016/j.aca.2012.12.019
2. X.
Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization
mechanisms of aromatic acid based deep eutectic solvents: an experimental and
theoretical study, Chem. Eur. J. 24 (2018) 11021–11032, https://doi.org/10.1002/chem.201801631
3. S.E.
Warrag, C. Pototzki, N.R. Rodriguez,M. van Sint Annaland, M.C. Kroon, C. Held,
G.Sadowski, C.J. Peters, Oil desulfurization using deep eutectic solvents as
sustainable and economical extractants via liquid-liquid extraction:
experimental and PC-SAFT predictions, Fluid Phase Equilib. 467 (2018) 33–44, https://doi.org/10.1016/j.fluid.
2018.03.018
4. Lloret
J.O., Vega L.F., Lovell L., (2017), Accurate description of thermophysical
properties oAf tetraalkylammonium chloride deep eutectic solvents with the
soft-SAFT equation of state. J. fluid., 448,81-93. https://doi.org/10.1016/j.fluid.2017.04.013
5. Banjare,
M. K., Barman, B., Behera, K., Khan, J. M., Banjare, R. K., Pandey, S., &
Ghosh, K. K. (2024). Molecular interaction between three novel amino acid based
deep eutectic solvents with surface active ionic liquid: A comparative study.
Heliyon, 10(15). https://doi.org/10.1016/j.heliyon.2024.e35598
6. Barman,
B., & Banjare, M. K. (2024). Synthesis and characterization of biologically
active five amino acids based deep eutectic solvents. Alochana Journal, 13, 1. https://doi.org/20.14118.AJ.2024.V13I1.2161
7. Kumar,
A., Banjare, M. K., Yadav, T., Sinha, S., Sahu, R., Satnami, M. L., Ghosh, K.
K., Imidazolium-based ionic liquid as modulator of physicochemical properties
of cationic, anionic, nonionic, and gemini surfactants. J. Surfactant Deterg.,
21 (2018) 355–366. https://doi.org/10.1002/jsde.12032
8. Banjare,
M. K., Behera, K., Kurrey, R., Banjare, R. K., Satnami, M. L., Pandey, S.,
Ghosh, K.K., (2018), Self-aggregation of bio-surfactants within ionic liquid
1-ethyl-3- methylimidazolium bromide: a comparative study and potential
application in antidepressants drug aggregation. Spectrochim. Acta A Mol.
Biomol. Spectrosc., 199 376-386. https://doi.org/10.1016/j.saa.2018.03.079
9. Barman
B., Banjare M.K., (2024), Review of green designer deep eutectic solvents
(DESs) production and prospective material science applications., Futuristic
trends in chemical material science & nano technology, e-ISBN:
978-93-5747-824-3. IIP series, Volume 3, Book 6, part 2, chapter 8. https://doi.org/10.58532/V3BJCS6P2CH8
10. Alonso
D.A., Baeza A., Chinchilla R., Guillena G., Paster I.M., Ramon D.J., (2016),
Deep eutectic solvents: The organic reaction medium of the century. Eur.JOC, 4,
612-632. https://doi.org/10.1002/ejoc.201501197
11. Z.
Li, D. Liu, Z.Men, L. Song, Y. Lv, P.Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen,
Insight into effective denitrification and desulfurization of liquid fuel with
deep eutectic solvents:an innovative evaluation criterion to filtrate
extractants using compatibility index, Green Chem. 20 (2018) 3112–3120, https://doi.org/10.1039/C8GC00828K.
12. Alonso,
D. A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I. M., & Ramón, D.
J. (2016). Deep eutectic solvents: the organic reaction medium of the century.
EurJO, 2016(4), 612-632 https://doi.org/10.1002/ejoc.201501197
13. Zhang,
Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic
solvents: syntheses, properties and applications. Chem Soc Rev, 41(21),
7108-7146. https://doi.org/10.1039/C2CS35178A
14. Sekharan,
T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B.
S. (2022). Deep eutectic solvents as an alternate to other harmful solvents.
Biointerface Res. Appl. Chem, 12, 847-860. https://doi.org/10.33263/BRIAC121.847860
15. E.
A. Krisanti, K. Saputra, M.M. Arif, K. Mulia, (2019), Formulation and
characterization of betaine-based deep eutectic solvent for extraction phenolic
compound from spent coffee grounds, AIP Conf. Proc. 2175, 020040-020048. https://doi.org/10.1063/1.5134604
16. Llovell
Ferret, F. L., Alkhatib, I. I., Ferreira, M. L., Alba, C. G., Bahamon, D.,
Pereiro, A. B., ... & Vega, L. F. (2020). Screening of ionic liquids and
deep eutectic solvents for physical CO2 absorption by soft-SAFT using key
performance indicators. J. Chem. Eng. Data. 65, 12, 5844-5861. https://doi.org/10.1021/acs.jced.0c00750
17. Welton
T. (2018), Ionic liquids: a brief history., Biophys.Rev.,10, 691- 706.
18. Pino
V., Afonso AM. (2012), Surface- bonded ionic liquid stationary phases in high-
performance liquid chromatography – a review. Analytica Chimica Acta,714:20-37.
https://doi.org/10.1016/j.aca.2011.11.045
19. Werner
S, Haumann M, and Wasserscheid P (2010). Ionic liquids in chemical engineering.
Annu. Rev. Chem. Biomo. Eng., 1, 203-230. https://doi.org/10.1146/annurev-chembioeng-073009-100915
20. Shamsuri
A.A., Abdullah D.K., (2010), Ionic liquid: preparations and limitations. Makara
J. Sci., 14,101-106.
21. Albert,
J., Muller, K. (2014). A group contribution method for the thermal properties
of ionic liquids.Ind.Eng.Chem.Res.,53,17522−17526. https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fie503366p&href=/doi/10.1021%2Fie503366p
22. Zhang
S., Sun N., He x., Lu X., Zhang X., (2006), Physical properties of ionic
liquids: Database and Evaluation. J. Phys. Chem. Ref. Data, 35, 1475. https://doi.org/10.1063/1.2204959
23. Tan
Z.Q., Liu J.F., Pang L., (2012), Advances in analytical chemistry using the
unique properties of ionic liquids. Trends Anal. Chem., 39,218-227. https://doi.org/10.1016/j.trac.2012.06.005
24. Greer
A.J., Jacquemin J., Hardacre C., (2020). Industrial applications of ionic
liquids. Molecules. 25,5207. https://doi.org/10.3390/molecules25215207
25. Leveque
J. M., Cravotto G., (2006), Microwaves, Power Ultrasound, and Ionic Liquids. A
New Synergy in Green Organic Synthesis. Chimia, 60, 313-320. https://doi.org/10.2533/000942906777836255
26. Moon,
Y.H., Lee, S.M., Ha, S.H., (2006). Enzyme-catalyzed reactions in ionic liquids.
Korean J. Chem. Eng. 23, 247–263. https://doi.org/10.1007/BF02705724
27. Ahmed
A. (2020) Sustainable Organic Synthesis in Ionic Liquids. In: Inamuddin, Asiri
A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in
the Life Sciences. Springer, Cham. 978-3-030-44176-0_1. https://doi.org/10.1007/978-3-030-44176-0_1
28. Lindman,
B., Puyal, M. C., Kamenka, N., Rymden, R., Stilbs, P. (1984). Micelle formation
of anionic and cationic surfactants from Fourier transform proton and lithium-7
nuclear magnetic resonance and tracer self-diffusion studies. J. Phys. Chem. A,
88, 5048−5057. https://doi.org/10.1021/j150665a051
29. Jiang
L, Deng M, Wang Y, Liang D, Yan Y, and Huang J (2009). Special Effect of
β-Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant
Systems. J. Phys. Chem. B 113, 21, 7498–7504. https://doi.org/10.1021/jp811455f
30. Fernandez
A.S., Leung A.E., Kelley E.G., Jackson A.J., (2021). Complex by design:
Hydrotrope – induced micellar growth in deep eutectic solvents. J. Colloid
Interface Sci. 581,292-298. https://doi.org/10.1016/j.jcis.2020.07.077\
31. Sekharan
T.R., Chandira R.M., Tamilvanan S., Rajesh S.C., Venkateswarlu B.S., (2022),
Deep Eutectic Solvents as an Alternate to other harmful solvents., Biointerface
Res. Appl. Chem,12,847-860. https://doi.org/10.33263/BRIAC121.847860
32. H.
Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with
cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic
solvents, Fuel 225 (2018) 104–110, https://doi.org/10.1016/j.fuel.2018.03.159.
33. Santos,
F.; Leitao P.S., M.I.; C. Duarte, A.R. (2019), Properties of Therapeutic Deep
Eutectic Solvents of l-Arginine and Ethambutol for Tuberculosis Treatment. J.
Mol. 24, 24010055. https://doi.org/10.3390/molecules24010055
34. Zhang
Q., Vigier K.D.O., Royer S.,Jerome F., (2012).deep eutectic solvents:
synthesis, properties and applications. Chem. Soc. Rev., 41,7108-7146. https://doi.org/10.1039/C2CS35178A
35. F.
Lima, J. Gouvenaux, L.C. Branco, A.J. Silvestre, I.M. Marrucho, Towards a
sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using
polyethylene glycol-based deep eutectic
solvents, Fuel 234 (2018) 414–421, https://doi.org/10.
1016/j.fuel.2018.07.043
36. Florindo
C., Oliveira F.S., Rebelo L.P.N., Fernandes A.M., Murrucho I.M., (2014),
Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on
Cholinium Chloride and Carboxylic Acids, ACS Sustainable Chem.Eng. 10,
2416-2425. https://doi.org/10.1021/sc500439w
37. Kumar
H., Kaur G., (2021). Scrutinizing self-assembly, surface activity and
aggregation behavior of mixtures of imidazolium based ionic liquids and
surfactants: A comprehensive Review. Front. Chem., 9, 1-23. https://doi.org/10.3389/fchem.2021.667941
38. Sanchez-Fernandez,
A., Arnold, T., Jackson, A. J., Fussell, S. L., Heenan, R. K., Campbell, R. A.,
Edler, K. J. (2016). Micellization of alkyltrimethylammonium bromide
surfactants in choline chloride:glycerol deep eutectic solvent. Phys. Chem.
Chem. Phys. 18, 33240−33249. https://doi.org/10.1039/C6CP06053F
39. Fernandez
A. S., Hommond O. S., Jackson A. J., Arnold T., Doutch J., Elder K. J., (2017),
Surfactant-Solvent interaction effects on the micellization of cationic
surfactants in a carboxylic acid-based deep eutectic solvent,
Langmuir,33,14304-14314. https://doi.org/10.1021/acs.langmuir.7b03254
40. S.E.
Warrag, I. Adeyemi, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, M.C.
roon, C.J. Peters, Effect of the type of ammonium salt on the extractive
desulfurization of fuels using deep eutectic solvents, J. Chem. Eng. Data 63
(2018) 1088–1095, https://doi.org/10.1021/acs.jced.7b00832
41. Alonso,
D. A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I. M., & Ramón, D.
J. (2016). Deep eutectic solvents: the organic reaction medium of the century.
EurJO, 2016(4), 612-632 https://doi.org/10.1002/ejoc.201501197
42. Zhang,
Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic
solvents: syntheses, properties and applications. Chem Soc Rev, 41(21),
7108-7146. https://doi.org/10.1039/C2CS35178A
43. Sekharan,
T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B.
S. (2022). Deep eutectic solvents as an alternate to other harmful solvents.
Biointerface Res. Appl. Chem, 12, 847-860. https://doi.org/10.33263/BRIAC121.847860
44. Banjare,
M. K., & Barman, B. (2024). Effect of biologically active amino acids based
deep eutectic solvents on sodium dodecyl sulfate: A comparative spectroscopic
study. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 308, 123700. https://doi.org/10.1016/j.saa.2023.123700
45. Tang,
Z., Wu, C., Tang, W., Ma, C., & He, Y. C. (2023). A novel
cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice
husk to efficiently enhance its enzymatic hydrolysis. Bioresource
Technology, 376, 128806. https://doi.org/10.1016/j.biortech.2023.128806
46. Banjare,
R. K., Banjare, M. K., Behera, K., Pandey, S., & Ghosh, K. K. (2020).
Micellization behavior of conventional cationic surfactants within
glycerol-based deep eutectic solvent. ACS omega, 5(31), 19350-19362. https://doi.org/10.1021/acsomega.0c00866
47. Banjare,
R. K., Banjare, M. K., Behera, K., Tandon, M., Pandey, S., & Ghosh, K. K.
(2021). Deep eutectic solvents as modulator on the micellization behaviour of
cationic surfactants and potential application in human serum albumin
aggregation. Journal of Molecular Liquids, 344, 117864. https://doi.org/10.1016/j.molliq.2021.117864
48. Banjare,
M. K., Behera, K., Satnami, M. L.; Pandey, S., Ghosh, K. K. (2018).
Self-assembly of a short-chain ionic liquid within deep eutectic solvents. RSC
Adv. 8, 7969−7979. https://doi.org/10.1039/C7RA13557B
49. Xu,
P., Zheng, GW., Zong, MH. et al. (2017) Recent progress on deep
eutectic solvents in biocatalysis. Bioresour. Bioprocess. 4, 34. https://doi.org/10.1186/s40643-017-0165-5
50. Bajkacz
S., Adamek J., Sobska A., (2020). Application of deep eutectic solvents and
ionic liquids in the extraction of catechins from tea. Molecules,25,3216. https://doi.org/10.3390/molecules25143216
51. Liu,
Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S. N., Pauli, G. F.
(2018). Natural deep eutectic solvents: properties, applications, and
perspectives. J. Nat. Prod. 3, 679−690. https://doi.org/10.1021/acs.jnatprod.7b00945
52. Pinho,
M. R., Lima, A. S., de Almeida Ribeiro Oliveira, G., Liao, L. M., Franceschi,
E., Silva, R. D., & Cardozo-Filho, L. (2024). Choline chloride-and organic
acids-based deep eutectic solvents: Exploring chemical and thermophysical
properties. Journal of Chemical & Engineering Data, 69(10),
3403-3414. https://doi.org/10.1021/acs.jced.3c00706
53. Duan
L., Dou L.L., Guo L.,Li P.Liu E., (2016). Comprehensive evalution of deep
eutectic solvents in extraction of bioactive natural products. ACS Sustainable
Chem.Eng., 4, 2405-2411. https://doi.org/10.1021/acssuschemeng.6b00091
54. Fernandez
A.S., Hammond O.S., Jackson A.J., Arnold T., Doutch J., Edler K.J., (2017),
Surfactant- solvent interaction effects on the micellization of cationic
surfactants in a carboxylic acid- based deep eutectic solvent,
Langmur,33,14304-14314. https://doi.org/10.1021/acs.langmuir.7b03254
55. González-Campos,
J. B., Pérez-Nava, A., Valle-Sánchez, M., & Delgado-Rangel, L. H. (2024).
Deep eutectic solvents applications aligned to 2030 United Nations Agenda for
Sustainable Development. Chemical Engineering and Processing-Process
Intensification, 199, 109751.
https://doi.org/10.1016/j.cep.2024.109751
56. Długosz,
O., & Banach, M. (2024). Green methods for obtaining deep eutectic solvents
(DES). Journal of Cleaner Production, 434, 139914. https://doi.org/10.1016/j.jclepro.2023.139914
57. Długosz O. (2023),
Natural Deep Eutectic Solvents in the Synthesis of Inorganic
Nanoparticles. Materials. 16(2):627. https://doi.org/10.3390/ma16020627
58. Arnodo, D., Maffeis, E.,
Marra, F., Nejrotti, S., & Prandi, C. (2023). Combination of enzymes and
deep eutectic solvents as powerful toolbox for organic
synthesis. Molecules, 28(2),516. https://doi.org/10.3390/molecules28020516
59. Smith,
E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs)
and their applications. Chemical reviews,
114(21), 11060-11082. https://doi.org/10.1021/cr300162p
60. Canadas,
R.; González-Miquel, M.; González, E.J. Overview of neoteric solvents as
extractants in food industry: A focus on phenolic compounds separation from
liquid streams. Food Res. Int. 2020, 136, 109558. https://doi.org/10.1016/j.foodres.2020.109558
61. Gonzalez,
E.J.; Díaz, I.; Gonzalez-Miquel, M. On the behavior of imidazolium versus
pyrrolidinium ionic liquids as extractants of phenolic compounds from water:
Experimental and computational analysis. Sep. Purif. Technol. 2018, 201,
214–222. https://doi.org/10.1016/j.seppur.2018.03.006
62. Ni,
H.; Dong, J.; Shi, J. Ionic liquid as extraction agent for detection of
volatile phenols in wastewater and its regeneration. J. Sep. Sci. 2015, 33,
1356–1359. https://doi.org/10.1002/jssc.200900730
63. Sas,
O.G.; Domínguez, I.; González, B. Liquid-liquid extraction of phenolic
compounds from water using ionic liquids: Literature review and new
experimental data using [C2mim]FSI. J. Environ. Manag. 2018, 228, 475–482. https://doi.org/10.1016/j.jenvman.2018.09.042
64. Chen,
Y.; Liang, H.; Qin, X. Cheap and biodegradable amino acid-based deep eutectic
solvents for radioactive iodine capture via halogen bonds. J. Mol. Liq. 2020,
303, 112615. https://doi.org/10.1016/j.molliq.2020.112615
65. Maneffa,
A.J.; Harrison, A.B.; Radford, S.J. Deep eutectic solvents based on natural
ascorbic acid analogues and choline chloride. ChemistryOpen 2020, 9, 559–567. https://doi.org/10.1002/open.202000020
66. Durand,
E., Lecomte, J., & Villeneuve, P. (2013). Deep eutectic solvents:
Synthesis, application, and focus on lipase‐catalyzed reactions. Eur J Lipid
Sci Technol, 115(4), 379-385. https://doi.org/10.1002/ejlt.201200416
67. Qin,
H., Hu, X., Wang, J., Cheng, H., Chen, L., & Qi, Z. (2020). Overview of
acidic deep eutectic solvents on synthesis, properties and applications. GEE,
5(1), 8-21. https://doi.org/10.1016/j.gee.2019.03.002
68. Banjare,
M. K., Behera, K., Satnami, M. L., Pandey, S., & Ghosh, K. K. (2018).
Self-assembly of a short-chain ionic liquid within deep eutectic solvents. RSC
advances, 8(15), 7969-7979. https://doi.org/10.1039/C7RA13557B
69. Lakshmi,
A.B.; Balasubramanian, A.; Venkatesan, S. Extraction of phenol and
chlorophenols using ionic liquid [Bmim]+[BF4], dissolved in tributyl phosphate.
CLEAN Soil Air Water. 2013, 41, 349–355. https://doi.org/10.1002/clen.201100632
70. Dai,
Y.; van Spronsen, J.; Witkamp, G.J. Natural deep eutectic solvents as new
potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019
71. Abbott,
A.P.; Capper, G.; Davies, D.L. Novel solvent properties of choline
chloride/urea mixtures. Chem. Commun. 2003, 9, 70–71. https://doi.org/10.1039/B210714G
72. Al-Risheq
D.I.M., Shaikh S.M.R., Nasser M.S., Almomani F., Hussein I.A., Hassan M.K.,
Enhancing the flocculation of stable bentonite suspension using hybrid system
of polyelectrolytes and NADES J. Col. Surface A Physicochem.And Eng. Aspects,
638,2022,128305. https://doi.org/10.1016/j.colsurfa.2022.128305
73. P.Abbot
A., Ttaib K.E., Frisch G., Electrodeposition of copper composites from deep
eutectic solvents based on choline chloride, J. physical chemistry chemical
physics., 11,2009, 4269-4277. https://doi.org/10.1039/B817881J
74. Kudlak
B., Owczarek K., Namiesnik J., Selected issues related to the toxicity of ionic
liquids and deep eutectic solvents—a review. J. Environment Sci. Pollution
Res., 22,2015,11975-11992. https://doi.org/10.1007/s11356-015-4794-y
75. Nahar
y., Thickett S.C., Greener, Faster, Stronger: The Benefits of Deep Eutectic
Solvents in Polymer and Materials Science, Polymers, 13(3) 2021, 447. https://doi.org/10.3390/polym13030447
76. Taghizadeh
M., taghizadeh A., Vatanpour V., Ganjali M.R., Saeb M.R., Deep eutectic
solvents in membrane science and technology: Fundamental, preparation,
application, and future perspective., J. Sep.Pur.Tech., 258,2021,118015. https://doi.org/10.1016/j.seppur.2020.118015
77. Li
X., Row K.H., Application of novel ternary deep eutectic solvents as a
functional monomer in molecularly imprinted polymers for purification of
levofloxacin, J. chromatography B., 1068-1069,2017,56-63. https://doi.org/10.1016/j.jchromb.2017.10.012
78. Ruesgas-
Ramon M., Figueroa- Espinoza M.C., and Durand E., Application of Deep Eutectic
Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and
Opportunities, J. Agric. Food chem., 65,18,2017,3591-3601. https://doi.org/10.1021/acs.jafc.7b01054
79. Abo-Hamad
A., Hayyan M., Alsaadi M.A.H., Hashim M.A., Potential applications of deep
eutectic solvents in nanotechnology, J.Chem. Eng. J., 273,2015,551-567. https://doi.org/10.1016/j.cej.2015.03.091
80. Tang
B., Zhang H., Row K.H., Application of deep eutectic solvents in the extraction
and separation of target compounds from various samples J. Sep.
Sci.,38,2015,1053-1064. https://doi.org/10.1002/jssc.201401347
81. Vigier
K.D.O., Chatel G., Jerome F., (2015). Contribution of deep eutectic solvents
for biomass processing: opportunities, challenges, and limitations.
Chemcatchem, 7,1250-1260. https://doi.org/10.1002/cctc.201500134
82. Garcia
G., Aparicio S., Ullah R., Atilhan M., (2015). Deep eutectic solvents:
physicochemical properties and gas separation applications. Energy &
fuels,29,2616-2644. https://doi.org/10.1021/ef5028873
83. Li
X.,Row K.H.,(2016).Development of deep eutectic solvents applied in extraction
and separation. J. Sep. Sci, 39, 3505-3520. https://doi.org/10.1002/jssc.201600633
84. Sarmad
S., Mikkola J.P., Ji X., (2016). Carbon dioxide capture with ionic liquids and
deep eutectic solvents: A new generation of sorbents A review. Chemsuschem, 10,
324-352. https://doi.org/10.1002/cssc.201600987
85. Liu,
P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. (2015). Recent advances in the
application of deep eutectic solvents as sustainable media as well as catalysts
in organic reactions. RSC Adv. 5, 48675−48704. https://doi.org/10.1039/C5RA05746A
86. Zdziennicka
A., Szymczyk K., Krawczyk J., Janczuk., (2012). Critical micelle concentration
of some surfactants and thermodynamic parameters of their micellization. Fluid
Phase. Equilibria. 322-323,126-134. https://doi.org/10.1016/j.fluid.2012.03.018
87. Shi
Y., Luo H.Q., Li N.B., (2011), Determination of the critical premicelle
concentration, first critical micelle concentration and second critical micelle
concentration of surfactants by resonance Rayleigh scattering method without
any probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 78,1403-1407. https://doi.org/10.1016/j.saa.2011.01.018
88. El
Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and
properties of deep eutectic solvents: a review. Environmental chemistry
letters, 19, 3397-3408. https://doi.org/10.1007/s10311-021-01225-8
89. Zhang,
M., Zhang, X., Liu, Y., Wu, K., Zhu, Y., Lu, H., & Liang, B. (2021).
Insights into the relationships between physicochemical properties, solvent
performance, and applications of deep eutectic solvents. Environmental Science
and Pollution Research, 28(27), 35537-35563. https://doi.org/10.1007/s11356-021-14485-2
90. Li,
Q., Jiang, J., Li, G., Zhao, W., Zhao, X., & Mu, T. (2016). The
electrochemical stability of ionic liquids and deep eutectic solvents. Science
China Chemistry, 59, 571-577. https://doi.org/10.1007/s11426-016-5566-3
91. Jiang
H.J., Atkin R., G. Warr G., Nanostructured ionic liquids and their solutions:
Recent advances and emerging challenges, Curr. Opin. Green Sustain. Chem., 12,
2018, 27-32. https://doi.org/10.1016/j.cogsc.2018.05.003
92. Rahman
M. S., Roy R., Montoya, C., Halim M.A., Raynie D. E., Acidic and basic amino
acid-based novel deep eutectic solvents and their role in depolymerization of
lignin, J. Mol. Liq., 362, 2022, 119751. https://doi.org/10.1016/j.molliq.2022.119751
93. Li,
M., Liu, Y., Hu, F., Ren H., and Duan, E., Amino acid-based natural deep
eutectic solvents for extraction of phenolic compounds from aqueous
Environments, Processes 2021, 9(10), 1716. https://doi.org/10.3390/pr9101716
94. A.
Zdziennicka, K. Szymczyk, J. Krawczyk, Janczuk, Critical micelle concentration
of some surfactants and thermodynamic parameters of their micellization, Fluid
Phase Equilibria 322–323 (2012) 126–134. https://doi.org/10.1016/j.fluid.2012.03.018
95. Y.
Shi, H.Q. Luo, N.B. Li, Determination of the critical premicelle concentration,
first critical micelle concentration and second critical micelle concentration
of surfactants by resonance Rayleigh scattering method without any probe,
Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (2011) 1403–1407. https://doi.org/10.1016/j.saa.2011.01.018
96. F.
M. Manger, J.U. Rhee, H.K. Rhee, Applications of surfactants to synthetic
organic chemistry, J. Org. Chem. 40 (1975) 3803–3805. https://doi.org/10.1021/jo00913a051
97. Abbott,
A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003).
Novel solvent properties of choline chloride/urea mixtures. Chemical
communications, (1), 70-71. https://doi.org/10.1039/B210714G
98. A.
P. Abbott, et al. "Deep eutectic solvents formed between choline chloride
and carboxylic acids: versatile alternatives to ionic liquids." Journal of
the American Chemical Society, Vol. 126, No. 29, pp. 9142-9147, 2004. https://doi.org/10.1021/ja048266j
99. M.
A. Kareem, F.S. Mjalli, M.A. Hashim, I. M. J. AlNashed "Phosphonium-based
ionic liquids analogues and their physical properties" Chem. Eng. Data,
Vol. 55, No. 11, pp. 4632-4637, 2010. https://doi.org/10.1021/je100104v
100. A.
P. Abbott, et al. "Eutectic‐based ionic liquids with metal‐containing
anions and cations" Chemistry–A European Journal, Vol.13, No. 22, pp.
6495-6501, 2007. https://doi.org/10.1002/chem.200601738
101. Affat,
S. (2024). A review of deep eutectic solvents (DESs), Preparation,
Classification, Physicochemical properties, Advantages and disadvantages.
University of Thi-Qar Journal of Science, 11(1), 166-174. https://doi.org/10.32792/utq/utjsci/v11i1.1208
102. A.
Bhardwaj, S. Hartland, Applications of surfactants in petroleum industry, J.
Dispers. Sci. Technol. 14 (1993) 87–116. https://doi.org/10.1080/01932699308943389
103. M.
Abe, Synthesis and applications of surfactants containing fluorine, Curr. Opin.
Colloid Interface Sci. 4 (1999) 354–356. https://doi.org/10.1016/S1359-0294(99)90017-1
104. M.
Summers, J. Eastoe, Applications of polymerizable surfactants, Adv. Colloid
Interface Sci. 100–102 (2003) 137–152. https://doi.org/10.1016/S0001-8686(02)00058-1
105. B.
Lindman, M.C. Puyal, N. Kamenka, R. Rymden, P. Stilbs, Micelle formation of
anionic and cationic surfactants from Fourier transform proton and lithium-7
nuclear magnetic resonance and tracer self-diffusion studies, J. Phys. Chem. A
88 (1984) 5048–5057. https://doi.org/10.1021/j150665a051
106. A.
Sanchez-Fernandez, T. Arnold, A.J. Jackson, S.L. Fussell, R.K. Heenan, R. A.
Campbell, K.J. Edler, Micellization of alkyltrimethylammonium bromide
surfactants in choline chloride:glycerol deep eutectic solvent, Phys. Chem.
Chem. Phys. 18 (2016) 33240–33249. https://doi.org/10.1039/C6CP06053F
107. K.H.
Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta,
Optimisation of extractive desulfurization using Choline Chloride-based deep
eutectic solvents, Fuel 234 (2018) 1388–1400, https://doi.org/10.1016/j.fuel.2018.08.005.
108. García,
G., Aparicio, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents:
physicochemical properties and gas separation applications. Energy & Fuels,
29(4), 2616-2644. https://doi.org/10.1021/ef5028873
109. D.
J. G. P Van Osch, C. H. J. T. Dietz, S. E. E. Warrag, M. C. Kroon "The
curious case of hydrophobic deep eutectic solvents: a story on the discovery,
design, and applications" ACS Sustain. Chem. Eng., Vol. 8, 2020. https://doi.org/10.1021/acssuschemeng.0c00559
110. Y.
Dai, J. Van Spronsen, G. J. Witkamp, R. Verpoorte, Y. H. Choi "Natural
deep eutectic solvents as new potential media for green technology" Anal.
Chim. Acta , Vol. 766, pp. 61-68, 2013. https://doi.org/10.1016/j.aca.2012.12.019
111. R.
K. Ibrahim, M. Hayyan, M. A. AlSaadi, S. Ibrahim, A. Hayyan, M. A. Hashim
"Physical properties of ethylene glycol-based deep eutectic solvents, J.
Mol. Liq. pp. 276 794-800, 2019. https://doi.org/10.1016/j.molliq.2018.12.032
112. M.
A. R. Martins, E. A. Crespo, P. V. A. Pontes, L. P. Silva, M. Bülow, G. J.
Maximo, E. A. C. Batista, C. Held, S. P. Pinho, J. A. P Coutinho "Tunable
hydrophobic eutectic solvents based on terpenes and monocarboxylic acids"
ACS Sustain. Chem. Eng, Vol. 6, pp. 8836-8846, 2018. https://doi.org/10.1021/acssuschemeng.8b01203
113. W.
Guo, Y. Hou, S. Ren, S. Tian, W. Wu "Formation of deep eutectic solvents
by phenols and choline chloride and their physical properties, J. Chem. Eng.
Data, Vol. 58, pp. 866-872, 2013. https://doi.org/10.1021/je300997v
114. W.
Lu, S. Liu, Z. Wu "Recent application of deep eutectic solvents as green
solvent in dispersive liquid-liquid microextraction of trace level 173 chemical
contaminants in food and water" Crit. Rev. Anal. Chem. , Vol. 52, pp.
504-518, 2022. https://doi.org/10.1080/10408347.2020.1808947
115. L.
Nakhle, M. Kfoury, I. Mallard, D. Landy, H. Greige-Gerges "Microextraction
of bioactive compounds using deep eutectic solvents: a review" Environ.
Chem. Lett., Vol. 19, pp. 3747-3759, 2021. https://doi.org/10.1007/s10311-021-01255-2
116. Y.
Chen, W. Chen, L. Fu, Y. Yang, Y. Wang, X. Hu, F. Mu. T. Wang "Surface
tension of 50 deep eutectic solvents: effect of hydrogen-bonding donors,
hydrogen-bonding acceptors, other solvents, and temperature" Ind. Eng.
Chem. Res., Vol. 58, pp. 12741-12750, 2019. https://doi.org/10.1021/acs.iecr.9b00867
117. Fukuzumi,
S., Lee, Y. M., & Nam, W. (2019). Structure and reactivity of the first-row
d-block metal-superoxo complexes. Dalton Transactions, 48(26),
9469-9489. https://doi.org/10.1039/C9DT01402K
118. D.E.
Crawford, L.A. Wright, S.L. James, A.P. Abbott., Chem. Commun. 52, (2016),
4215-4218. https://doi.org/10.1039/C5CC09685E
119. Manikandan,
V., & Lee, N. Y. (2022). Green synthesis of carbon quantum dots and their
environmental applications. Environmental Research, 212,
113283. https://doi.org/10.1016/j.envres.2022.113283
120. B.
Tang, W. Bi, H. Zhang, K. H. Row "Deep eutectic solvent-based HS-SME
coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis
obtuse leaves" Chromatographia, Vo.l. 77, 373-377, 2014. https://doi.org/10.1007/s10337-013-2607-3
121. L.
Nakhle, M. Kfoury, I. Mallard, D. Landy, H. Greige-Gerges "Microextraction
of bioactive compounds using deep eutectic solvents: a review" Environ.
Chem. Lett., Vol. 19, pp. 3747-3759, 2021. https://doi.org/10.1007/s10311-021-01255-2
122. Ren,
S., Mu, T., & Wu, W. (2023). Advances in deep eutectic solvents: New green
solvents. Processes, 11(7), 1920. https://doi.org/10.3390/pr11071920
123. Sitze,
S. Melissa, et al. "Ionic liquids based on FeCl3 and FeCl2. Raman
scattering and ab initio calculations" Inorganic chemistry, Vol. 40, No.
10, pp. 2298-2304, 2001. https://doi.org/10.1021/ic001042r
124. Eliel,
E. L., & Mosher, H. S. (1975). The 1975 Nobel Prize for Chemistry. Science, 190(4216),
772-774. https://doi.org/10.1126/science.190.4216.772
125. T.
B Scheffler, M. S. Thomson, In Seventh International Conference on Molten
Salts; The Electrochemical Society: Montreal, p 281, 1990. https://doi.org/10.1016/0013-4686(96)00080-1
126. El
Abedin, S. Zein, et al. "Electrodeposition of selenium, indium and copper
in an air-and water-stable ionic liquid at variable temperatures."
Electrochimica Acta, Vol. 52, No. 8, pp. 2746-2754, 2007. https://doi.org/10.1016/j.electacta.2006.08.064
127. S.
A. Bolkan, , and T. J. Yoke. "Room temperature fused salts based on copper
(I) chloride-1-methyl-3-ethylimidazolium chloride mixtures. 1. Physical
properties" Journal of Chemical and Engineering Data, pp. 194-197, 1986. https://doi.org/10.1021/je00044a019
128. Yang,
Jia-Zhen, et al. "Studies on mixture of ionic liquid EMIGaCl4 and
EMIC." Fluid Phase Equilibria, Vol. 227, No. 1, pp. 41- 46, 2005. https://doi.org/10.1016/j.fluid.2004.10.026
129. L.
Emma, Smith, A.P. Abbott and S. Karl, S. Ryder "Deep eutectic solvents
(DESs) and their applications, Chemical. Reviews, Vol.114, pp.11060−11082,
2014. https://doi.org/10.1021/cr300162p
130. Piemontese,
L., Sergio, R., Rinaldo, F., Brunetti, L., Perna, F. M., Santos, M. A., &
Capriati, V. (2020). Deep eutectic solvents as effective reaction media for the
synthesis of 2-hydroxyphenylbenzimidazole-based scaffolds en route to
donepezil-like compounds. Molecules, 25(3), 574. https://doi.org/10.3390/molecules25030574
131. Leron,
R. B., Soriano, A. N., & Li, M. H. (2012). Densities and refractive indices
of the deep eutectic solvents (choline chloride+ ethylene glycol or glycerol)
and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K.
Journal of the Taiwan Institute of Chemical Engineers, 43(4), 551-557. https://doi.org/10.1016/j.jtice.2012.01.007
132. Li,
C. J., & Anastas, P. T. (2012). Green Chemistry: present and future. Chemical
Society Reviews, 41(4), 1413-1414. https://doi.org/10.1039/C1CS90064A
133. M.K.H.
Kali, K.E.A. Khidir, I. Wazeer, L.E. Blidi, S. Mulyono, I.M. AlNashef,
Application of deep eutectic solvents and their individual constituents as
surfactants for enhanced oil recovery, Col. Surfa. A 487 (2015) 221–231. https://doi.org/10.1016/j.colsurfa.2015.10.005
134. M.
Pal, R. Rai, A. Yadav, R. Khanna, G.A. Baker, S. Pandey, Self-Aggregation of
Sodium Dodecyl Sulfate within (Choline Chloride + Urea) Deep Eutectic Solvent,
Langmuir 30 (44) (2014) 13191–13198. https://doi.org/10.1021/la5035678
135. T.
Arnold, A.J. Jackson, A. Sanchez-Fernandez, D. Magnone, A.E. Terry, K.J. Edler,
Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline
Chloride/ Urea, Langmuir 31 (47) (2015) 12894–12902. https://doi.org/10.1021/acs.langmuir.5b02596
136. Tucker,
J. L. (2006). Green chemistry, a pharmaceutical perspective. Organic
process research & development, 10(2), 315-319. https://doi.org/10.1021/op050227k
137. Vigier,
K. D. O., Chatel, G., & Jérôme, F. (2015). Contribution of deep eutectic
solvents for biomass processing: opportunities, challenges, and limitations.
ChemCatChem, 7(8), 1250-1260. https://doi.org/10.1002/cctc.201500134
138. Sekharan,
T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B.
S. (2022). Deep eutectic solvents as an alternate to other harmful solvents.
Biointerface Res. Appl. Chem, 12(1), 847-860. https://doi.org/10.33263/BRIAC121.847860
139. Płotka-Wasylka,
J., De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic
solvents vs ionic liquids: Similarities and differences. Microchemical Journal,
159, 105539. https://doi.org/10.1016/j.microc.2020.105539
140. Canales,
R. I., & Brennecke, J. F. (2016). Comparison of ionic liquids to
conventional organic solvents for extraction of aromatics from aliphatics.
Journal of Chemical & Engineering Data, 61(5), 1685-1699. https://doi.org/10.1021/acs.jced.6b00077
141. Vanda,
H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green
solvents from ionic liquids and deep eutectic solvents to natural deep eutectic
solvents. Comptes Rendus Chimie, 21(6), 628-638. https://doi.org/10.1016/j.crci.2018.04.002
142. M.K.
Banjare, R. Kurrey, T. Yadav, S. Sinha, M.L. Satnami, K.K. Ghosh, A comparative
study on the effect of imidazolium-based ionic liquid on self-aggregation of
cationic, anionic and nonionic surfactants studied by surface tension,
conductivity, fluorescence and FTIR spectroscopy, J. Mol. Liq. 241 (2017)
622–632. https://doi.org/10.1016/j.molliq.2017.06.009
143. Lima,
F., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2021). Deep
desulfurization of fuels: Are deep eutectic solvents the alternative for ionic
liquids?. Fuel, 293, 120297. https://doi.org/10.1016/j.fuel.2021.120297
144. A.
Kumar, M.K. Banjare, T. Yadav, S. Sinha, R. Sahu, M.L. Satnami, K.K. Ghosh,
Imidazolium-based ionic liquid as modulator of physicochemical properties of
cationic, anionic, nonionic, and gemini surfactants, J. Surfactant Deterg. 21
(2018) 355–366. https://doi.org/10.1002/jsde.12032
145. R.K.
Banjare, M.K. Banjare, S. Panda, Effect of acetonitrile on the colloidal
behavior of conventional cationic surfactants: a combined conductivity, surface
tension, fluorescence and FTIR study, J. Solution Chem. 49 (2020) 34–51. https://doi.org/10.1007/s10953-019-00937-4
146. M.K.
Banjare, K. Behera, R. Kurrey, R.K. Banjare, M.L. Satnami, S. Pandey, K. K.
Ghosh, Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-
methylimidazolium bromide: a comparative study and potential application in
antidepressants drug aggregation, Spectrochim. Acta A 199 (2018) 376–386. https://doi.org/10.1016/j.saa.2018.03.079
147. Kalidindi,
S. B., & Jagirdar, B. R. (2012). Nanocatalysis and prospects of green
chemistry. ChemSusChem, 5(1), 65-75. https://doi.org/10.1002/cssc.201100377
148. M.A.
Rub, N. Azum, D. Kumar, A.M. Asiri, Interaction of TX-100 and antidepressant
imipramine hydrochloride drug mixture: surface tension, 1H-NMR, and FTIR, Gels
8 (2022) 159. https://doi.org/10.3390/gels8030159
149. A.
Goel, S. Tomar, S. Tomar, A facile synthesis and characterization of surfactant
(CTAB/TSC/TX-100) assisted Ir-Sn bimetallic nanoparticles, J. Nanostruct. 10
(2020) 846–862. https://doi.org/10.22052/JNS.2020.04.018
150. Prabhune, A., & Dey,
R. (2023). Green and sustainable solvents of the future: Deep eutectic
solvents. Journal of Molecular Liquids, 379, 121676. https://doi.org/10.1016/j.molliq.2023.121676
151. Afonso, J., Mezzetta,
A., Marrucho, I. M., & Guazzelli, L. (2023). History repeats itself again:
Will the mistakes of the past for ILs be repeated for DESs? From being
considered ionic liquids to becoming their alternative: The unbalanced turn of
deep eutectic solvents. Green Chemistry, 25(1), 59-105. https://doi.org/10.1039/D2GC03198A
152. A.
Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Application of
deep eutectic solvents in analytical chemistry, A review. Microchem. J. 135
(2017) 33–38. https://doi.org/10.1016/j.microc.2017.07.015
153. Merza,
F., Fawzy, A., AlNashef, I., Al-Zuhair, S., & Taher, H. (2018).
Effectiveness of using deep eutectic solvents as an alternative to conventional
solvents in enzymatic biodiesel production from waste oils. Energy Reports, 4,
77-83. https://doi.org/10.1016/j.egyr.2018.01.005
154. M.S.
Kamal, I.A. Hussein, A.S. Sultan, Review on surfactant flooding: phase
behavior, retention, IFT, and field applications, Energy Fuels 31 (2017)
7701–7720. https://doi.org/10.1021/acs.energyfuels.7b00353
155. Sheldon,
R. A. (2012). Fundamentals of green chemistry: efficiency in reaction
design. Chemical Society Reviews, 41(4), 1437-1451. https://doi.org/10.1039/C1CS15219J
156. Hjeresen,
D. L., Boese, J. M., & Schutt, D. L. (2000). Green chemistry and
education. Journal of Chemical Education, 77(12), 1543.
https://doi.org/10.1021/ed077p1543
157. M.
Pal, R.K. Singh, S. Pandey, Evidence of self-aggregation of cationic
surfactants in a choline chloride+ glycerol deep eutectic solvent, Chem. Phys.
Chem. 16 (2015) 2538–2542. https://doi.org/10.1002/cphc.201500357
158. Zhang,
Y.; Li, Z.;Wang, H. Efficient separation of phenolic compounds from model oil
by the formation of choline derivative-based deep eutectic solvents. Sep.
Purif. Technol. 2016, 163, 310–318. https://doi.org/10.1016/j.seppur.2016.03.014
159. Martinez,
R.; Berbegal, L.; Guillena, G. Bio-renewable enantioselective aldol reaction in
natural deep eutectic solvents. Green Chem. 2016, 47, 1724–1730. https://doi.org/10.1039/C5GC02526E
160. Shishov,
A.; Pochivalov, A.; Nugbienyo, L. Deep eutectic solvents are not only effective
extractants. TrAC Trends Anal. Chem. 2020, 219, 115956. https://doi.org/10.1016/j.trac.2020.115956
161. Herrmann,
J. M., Duchamp, C., Karkmaz, M., Hoai, B. T., Lachheb, H., Puzenat, E., &
Guillard, C. (2007). Environmental green chemistry as defined by
photocatalysis. Journal of hazardous materials, 146(3),
624-629. https://doi.org/10.1016/j.jhazmat.2007.04.095
162. Mako,
P.; Supek, E.; Gbicki, J. Hydrophobic deep eutectic solvents in microextraction
techniques—A review. Microchem. J. 2019, 152, 104384. https://doi.org/10.1016/j.microc.2019.104384
163. Mei,
X.; Li, J.; Jing, C.; Fang, C. Separation and recovery of phenols from an
aqueous solution by a green membrane system. J. Clean. Prod. 2019, 251, 119675.
https://doi.org/10.1016/j.jclepro.2019.119675
164. Zhang,
M.; Zhang, Z.; Liu, S. Ultrasound-assisted electrochemical treatment for
phenolic wastewater. Ultrason. Sonochem. 2020, 65, 105058. https://doi.org/10.1016/j.ultsonch.2020.105058
165. Florindo,
C.; Monteiro, N.V.; Ribeiro, B.D. Hydrophobic deep eutectic solvents for
purification of water contaminated with bisphenol-a. J. Mol. Liq. 2020, 297,
111841. https://doi.org/10.1016/j.molliq.2019.111841
166. Florindo,
C.; Branco, L.C.; Marrucho, I.M. Development of hydrophobic deep eutectic
solvents for extraction of pesticides from aqueous environments. Fluid Phase
Equilib. 2017, 448, 135–142. https://doi.org/10.1016/j.fluid.2017.04.002
167. De
Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H.
R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A
review. Saudi pharmaceutical journal, 27(1), 1-8. https://doi.org/10.1016/j.jsps.2018.07.011
168. Clark,
J. H. (2002). Solid acids for green chemistry. Accounts of chemical
research, 35(9), 791-797. https://doi.org/10.1021/ar010072a
169. Zhekenov,
T.; Toksanbayev, N.; Kazakbayeva, Z. Formation of type III deep eutectic
solvents and effect of water on their intermolecular interactions. Fluid Phase
Equilib. 2017, 441, 43–48.
170. Ma,
C.; Guo, Y.; Li, D. Molar enthalpy of mixing and refractive indices of choline
chloride-based deep eutectic solvents with water. Chem. Thermodyn. 2017, 105,
30–36.
171. Dai,
Y.;Witkamp, G.J.; Verpoorte, R. Tailoring properties of natural deep eutectic solvents
with water to facilitate their applications. Food Chem. 2015, 187, 14–19.
172. Ji,
Y.; Hou, Y.; Ren, S. Separation of phenolic compounds from oil mixtures using
environmentally benign biological reagents based on Brønsted acid-Lewis base
interaction. Fuel 2019, 239, 926–934.
173. Zhang,
Y.; Chang, C.; Tan, B. Application of a Sustainable Bioderived Solvent
(Biodiesel) for Phenol Extraction. ACS Omega 2019, 4, 10431–10437.
174. Galbe,
M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of
common methods for efficient utilisation of lignocellulosic materials.
Biotechnology for biofuels, 12(1), 294.
175. Liu,
Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., ... & Yu, H. (2017).
Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of
lignin oligomers from wood biomass by microwave‐assisted treatment with deep
eutectic solvent. ChemSusChem, 10(8), 1692-1700.
176. Alvarez-Vasco,
C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K. K., ... &
Zhang, X. (2016). Unique low-molecular-weight lignin with high purity extracted
from wood by deep eutectic solvents (DES): a source of lignin for valorization.
Green chemistry, 18(19), 5133-5141.
177. Płotka-Wasylka,
J., De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic
solvents vs ionic liquids: Similarities and differences. Microchemical Journal,
159, 105539.
178. Kang,
S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic
acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy
Reviews, 94, 340-362.
179. Zhou,
L., Zhang, M., Huo, Y., Bai, L., He, S., Wang, J., ... & Guo, X. (2022).
Green Energy Environ. 2022. press. https://doi.org/10.1016/j.gee,3
180. Rasmussen,
H., Sørensen, H. R., & Meyer, A. S. (2014). Formation of degradation
compounds from lignocellulosic biomass in the biorefinery: sugar reaction
mechanisms. Carbohydrate research, 385, 45-57.
181. Feng,
Y., Li, M., Gao, Z., Zhang, X., Zeng, X., Sun, Y., ... & Lin, L. (2019).
Development of betaine‐based sustainable catalysts for green conversion of
carbohydrates and biomass into 5‐hydroxymethylfurfural. ChemSusChem, 12(2),
495-502.
182. Gomes,
G. R., & Pastre, J. C. (2020). Microwave-assisted HMF production from
water-soluble sugars using betaine-based natural deep eutectic solvents
(NADES). Sustainable Energy & Fuels, 4(4), 1891-1898.
183. Araji,
N., Madjinza, D. D., Chatel, G., Moores, A., Jérôme, F., & Vigier, K. D. O.
(2017). Synthesis of maleic and fumaric acids from furfural in the presence of
betaine hydrochloride and hydrogen peroxide. Green Chemistry, 19(1), 98-101.
184. Mao,
C., Zhao, R., Li, X., & Gao, X. (2017). Trifluoromethanesulfonic acid-based
DESs as extractants and catalysts for removal of DBT from model oil. RSC
advances, 7(21), 12805-12811. https://doi.org/10.1039/C6RA28448E
185. Müller,
C. R., Meiners, I., & de Maria, P. D. (2014). Highly enantioselective
tandem enzyme–organocatalyst crossed aldol reactions with acetaldehyde in
deep-eutectic-solvents. RSC Advances, 4(86), 46097-46101. https://doi.org/10.1039/C4RA09307K
186. Omar,
K. A., & Sadeghi, R. (2022). Physicochemical properties of deep eutectic
solvents: A review. Journal of Molecular Liquids, 360, 119524. https://doi.org/10.1016/j.molliq.2022.119524
187. Mulyono,
S., Hizaddin, H. F., Alnashef, I. M., Hashim, M. A., Fakeeha, A. H., &
Hadj-Kali, M. K. (2014). Separation of BTEX aromatics from n-octane using a
(tetrabutylammonium bromide+ sulfolane) deep eutectic solvent–experiments and
COSMO-RS prediction. Rsc Advances, 4(34), 17597-17606. https://doi.org/10.1039/C4RA01081G
188. Huang,
W., Wang, H., Hu, W., Yang, D., Yu, S., Liu, F., & Song, X. (2021).
Degradation of polycarbonate to produce bisphenol A catalyzed by
imidazolium-based DESs under metal-and solvent-free conditions. RSC advances,
11(3), 1595-1604. https://doi.org/10.1039/D0RA09215K
189. Juneidi,
I., Hayyan, M., & Hashim, M. A. (2015). Evaluation of toxicity and
biodegradability for cholinium-based deep eutectic solvents. RSC Advances,
5(102), 83636-83647. https://doi.org/10.1039/C5RA12425E
190. Cardellini,
F., Germani, R., Cardinali, G., Corte, L., Roscini, L., Spreti, N., &
Tiecco, M. (2015). Room temperature deep eutectic solvents of (1
S)-(+)-10-camphorsulfonic acid and sulfobetaines: Hydrogen bond-based mixtures
with low ionicity and structure-dependent toxicity. RSC Advances, 5(40),
31772-31786. https://doi.org/10.1039/C5RA03932K
191. Kali
M.K.H., Khidir K.E.A., Wazeer I., Blidi L.E., Mulyono S., AlNashef I.M. (2015),
Application of deep eutectic solvents and their individual constituents as
surfactants for enhanced oil recovery, Col. Surfa. 487, 221-231. https://doi.org/10.1016/j.colsurfa.2015.10.005
192. Sheldon,
R. A. (2018). Metrics of green chemistry and sustainability: past, present, and
future. ACS Sustainable Chemistry & Engineering, 6(1),
32-48. https://doi.org/10.1021/acssuschemeng.7b03505
193. Nguyen,
D., Van Huynh, T., Nguyen, V. S., Cao, P. L. D., Nguyen, H. T., Wei, T. C., ...
& Nguyen, P. T. (2021). Choline chloride-based deep eutectic solvents as
effective electrolytes for dye-sensitized solar cells. RSC advances, 11(35),
21560-21566. https://doi.org/10.1039/D1RA03273A
194. Fan,
K., Yang, B., Yu, S., Yang, R., Zhang, L., Chi, W., ... & Guo, J. (2023).
Ternary choline chloride/benzene sulfonic acid/ethylene glycol deep eutectic
solvents for oxidative desulfurization at room temperature. RSC advances,
13(37), 25888-25894. https://doi.org/10.1039/D3RA02524A
195. Poliakoff,
M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green
chemistry: science and politics of change. Science, 297(5582),
807-810. https://doi.org/10.1126/science.297.5582.807
196. Mulvihill,
M. J., Beach, E. S., Zimmerman, J. B., & Anastas, P. T. (2011). Green
chemistry and green engineering: a framework for sustainable technology
development. Annual review of environment and resources, 36(1),
271-293. https://doi.org/10.1146/annurev-environ-032009-095500
197. Tobiszewski,
M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015). Green chemistry metrics
with special reference to green analytical chemistry. Molecules, 20(6),
10928-10946. https://doi.org/10.3390/molecules200610928
198. Dai,
Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013).
Natural deep eutectic solvents as new potential media for green technology.
Anal. Chim. Acta, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019
199. Cunha,
S. C., & Fernandes, J. O. (2018). Extraction techniques with deep eutectic
solvents. TrAC Trends in Analytical Chemistry, 105, 225-239. https://doi.org/10.1016/j.trac.2018.05.001
200. Chandran,
D., Khalid, M., Walvekar, R., Mubarak, N. M., Dharaskar, S., Wong, W. Y., &
Gupta, T. C. S. M. (2019). Deep eutectic solvents for
extraction-desulphurization: A review. Journal of Molecular Liquids, 275,
312-322. https://doi.org/10.1016/j.molliq.2018.11.051
201. Torregrosa-Crespo,
J., Marset, X., Guillena, G., Ramón, D. J., & Martínez-Espinosa, R. M.
(2020). New guidelines for testing “Deep eutectic solvents” toxicity and their
effects on the environment and living beings. Science of the Total Environment,
704, 135382. https://doi.org/10.1016/j.scitotenv.2019.135382
202. Pätzold,
M., Siebenhaller, S., Kara, S., Liese, A., Syldatk, C., & Holtmann, D.
(2019). Deep eutectic solvents as efficient solvents in biocatalysis. Trends in
biotechnology, 37(9), 943-959.
203. Laird,
T. (2012). Green chemistry is good process chemistry. Organic Process
Research & Development, 16(1), 1-2. https://doi.org/10.1021/op200366y
204. Li,
C. J., & Trost, B. M. (2008). Green chemistry for chemical synthesis. Proceedings
of the National Academy of Sciences, 105(36), 13197-13202. https://doi.org/10.1073/pnas.0804348105
205. Lei,
Z., Chen, B., Koo, Y. M., & MacFarlane, D. R. (2017). Introduction: ionic
liquids. Chemical Reviews, 117(10), 6633-6635. https://doi.org/10.1021/acs.chemrev.7b00246
206. X.
Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization
mechanisms of aromatic acid based deep eutectic solvents: an experimental and
theoretical study, Chem. Eur. J. 24 (2018) 11021–11032, https://doi.org/10.1002/chem.
201801631.
207. Bjelić, A., Hočevar, B.,
Grilc, M., Novak, U., & Likozar, B. (2022). A review of sustainable
lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for
separations, catalysis and enzymatic biotransformation processes. Reviews
in Chemical Engineering, 38(3), 243-272. https://doi.org/10.1515/revce-2019-0077
208. Z.
Li, D. Liu, Z. Men, L. Song, Y. Lv, P. Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen,
Insight into effective denitrification and desulfurization of liquid fuel with
deep eutectic solvents: an innovative evaluation criterion to filtrate
extractants using compatibility index, Green Chem. 20 (2018) 3112–3120, https://doi.org/10.1039/C8GC00828K
209. H.
Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with
cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic
solvents, Fuel 225 (2018) 104–110, https://doi.org/10.1016/j.fuel.2018.03.159
210. Ganesh,
K. N., Zhang, D., Miller, S. J., Rossen, K., Chirik, P. J., Kozlowski, M. C.,
... & Voutchkova-Kostal, A. M. (2021). Green chemistry: a framework for a
sustainable future. Environmental Science & Technology, 55(13),
8459-8463. https://doi.org/10.1021/acs.est.1c03762
211. T.
Al-Wahaibi, Y. Al-Wahaibi, I.M. AlNashef, Deep oxidative desulfurization of
liquid fuels, Rev. Chem. Eng. 30 (2014) 337–378, https://doi.org/10.1515/revce-2014-0001
212. J.M.
Campos-Martin, M.d.C. Capel-Sanchez, P. Perez-Presas, J. Fierro, Oxidative
processes of desulfurization of liquid fuels, J. Chem. Technol. Biotechnol. 85
(2010) 879–890, https://doi.org/10.1002/jctb.2371
213. Beach,
E. S., Cui, Z., & Anastas, P. T. (2009). Green Chemistry: A design
framework for sustainability. Energy & Environmental Science, 2(10),
1038-1049. https://doi.org/10.1039/B904997P
214. Mbous,
Y. P., Hayyan, M., Hayyan, A., Wong, W. F., Hashim, M. A., & Looi, C. Y.
(2017). Applications of deep eutectic solvents in biotechnology and
bioengineering—Promises and challenges. Biotechnology advances, 35(2), 105-134.
https://doi.org/10.1016/j.biotechadv.2016.11.006
215. Galiński,
M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes.
Electrochimica acta, 51(26), 5567-5580. https://doi.org/10.1016/j.electacta.2006.03.016
216. Lima,
F., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2021). Deep
desulfurization of fuels: Are deep eutectic solvents the alternative for ionic
liquids?. Fuel, 293, 120297. https://doi.org/10.1016/j.fuel.2021.120297
217. Pandey,
S. (2006). Analytical applications of room-temperature ionic liquids: A review
of recent efforts. Analytica chimica acta, 556(1), 38-45. https://doi.org/10.1016/j.aca.2005.06.038
218. Merza,
F., Fawzy, A., AlNashef, I., Al-Zuhair, S., & Taher, H. (2018).
Effectiveness of using deep eutectic solvents as an alternative to conventional
solvents in enzymatic biodiesel production from waste oils. Energy Reports, 4,
77-83. https://doi.org/10.1016/j.egyr.2018.01.005
219. Berthod,
A., Ruiz-Angel, M. J., & Carda-Broch, S. (2008). Ionic liquids in
separation techniques. Journal of Chromatography A, 1184(1-2), 6-18. https://doi.org/10.1016/j.chroma.2007.11.109
220. Anastas,
P. T. (1999). Green chemistry and the role of analytical methodology
development. Critical reviews in analytical chemistry, 29(3),
167-175. https://doi.org/10.1080/10408349891199356
221. S.A.
Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, Imidazolium ionic liquid as
energy efficient solvent for desulfurization of liquid fuel, Sep. Purif.
Technol. 155 (2015) 101–109, https://doi.org/10.1016/j.seppur.2015.05.032
222. W.N.A.W.
Mokhtar, W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, Deep desulfurization of model
diesel by extraction with N,N-dimethylformamide: optimization by Box– Behnken
design, J. Taiwan Inst. Chem. Eng. 45 (2014) 1542–1548, https://doi.org/10.1016/j.jtice.2014.03.017
223. Paiva,
A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C.
(2014). Natural deep eutectic solvents–solvents for the 21st century. ACS
Sustainable Chemistry & Engineering, 2(5), 1063-1071. https://doi.org/10.1021/sc500096j
224. Keskin,
S., Kayrak-Talay, D., Akman, U., & Hortaçsu, Ö. (2007). A review of ionic
liquids towards supercritical fluid applications. The Journal of Supercritical
Fluids, 43(1), 150-180. https://doi.org/10.1016/j.supflu.2007.05.013
225. Craveiro,
R., Aroso, I., Flammia, V., Carvalho, T., Viciosa, M. T., Dionísio, M., ...
& Paiva, A. (2016). Properties and thermal behavior of natural deep
eutectic solvents. Journal of Molecular Liquids, 215, 534-540. https://doi.org/10.1016/j.molliq.2016.01.038
226. Nian,
B., & Li, X. (2022). Can deep eutectic solvents be the best alternatives to
ionic liquids and organic solvents: A perspective in enzyme catalytic
reactions. International journal of biological macromolecules, 217, 255-269. https://doi.org/10.1016/j.ijbiomac.2022.07.044
227. W.S.A.
Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep
eutectic solvents for effective extractive desulfurization of liquid fuel at
ambient conditions, Chem. Eng. Res. Des. 120 (2017) 271–283, https://doi.org/10.1016/j.cherd.2017.02.025
228. Płotka
Wasylka, J. De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep
eutectic solvents V/S ionic liquids: Similarities and differences.
Microchemical Journal, 159, 105539. https://doi.org/10.1016/j.microc.2020.105539
229. Gordon,
C. M. (2001). New developments in catalysis using ionic liquids. Applied
Catalysis A: General, 222(1-2), 101-117. https://doi.org/10.1016/S0926-860X(01)00834-1
230. C.-f.
Mao, R.-x. Zhao, X.-p. Li, Phenylpropanoic acid-based DESs as efficient
extractants and catalysts for the removal of sulfur compounds from oil, Fuel
189 (2017) 400–407, https://doi.org/10.1016/j.fuel.2016.10.113
231. Cao,
J., & Su, E. (2021). Hydrophobic deep eutectic solvents: The new generation
of green solvents for diversified and colorful applications in green chemistry.
Journal of Cleaner Production, 314, 127965. https://doi.org/10.1016/j.jclepro.2021.127965
232. Perna,
F. M., Vitale, P., & Capriati, V. (2020). Deep eutectic solvents and their
applications as green solvents. Current Opinion in Green and Sustainable
Chemistry, 21, 27-33. https://doi.org/10.1016/j.cogsc.2019.09.004
233. Hou,
Y. C., Yao, C. F., & Wu, W. Z. (2018). Deep eutectic solvents: green
solvents for separation applications. Acta Phys.-Chim. Sin, 34(8), 873-885.
doi: 10.3866/PKU.WHXB201802062
234. R.
Yusof, E. Abdulmalek, K. Sirat, M.B.A. Rahman, Tetrabutylammonium bromide
(TBABr)-based deep eutectic solvents (DESs) and their physical properties,
Molecules 19 (2014) 8011–8026, https://doi.org/10.3390/molecules19068011
235. Welton,
T. (2004). Ionic liquids in catalysis. Coordination chemistry reviews,
248(21-24), 2459-2477. https://doi.org/10.1016/j.ccr.2004.04.015
236. Schuur,
B., Brouwer, T., Smink, D., & Sprakel, L. M. (2019). Green solvents for
sustainable separation processes. Current Opinion in Green and Sustainable
Chemistry, 18, 57-65. https://doi.org/10.1016/j.cogsc.2018.12.009
237. S.E.
Warrag, I. Adeyemi, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, M.C.
Kroon, C.J. Peters, Effect of the type of ammonium salt on the extractive
desulfurization of fuels using deep eutectic solvents, J. Chem. Eng. Data 63
(2018) 1088–1095. https://doi.org/10.1021/acs.jced.7b00832
238. F.
Lima, J. Gouvenaux, L.C. Branco, A.J. Silvestre, I.M. Marrucho, Towards a
sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using
polyethylene glycol-based deep eutectic solvents, Fuel 234 (2018) 414–421, https://doi.org/10.
1016/j.fuel.2018.07.043
239. K.H.
Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta,
Optimisation of extractive desulfurization using Choline Chloride-based deep
eutectic solvents, Fuel 234 (2018) 1388–1400, https://doi.org/10.1016/j.fuel.2018.08.005
240. X.-L.
Tang, L. Shi, Study of the adsorption reactions of thiophene on Cu (I)/HY-Al2O3
by Fourier transform infrared and temperature-programmed desorption:
adsorption, desorption, and sorbent regeneration mechanisms, Langmuir 27 (2011)
11999–12007, https://doi.org/10.1021/la2025654
241. Deplanche,
K., Bennett, J. A., Mikheenko, I. P., Omajali, J., Wells, A. S., Meadows, R.
E., ... & Macaskie, L. E. (2014). Catalytic activity of biomass-supported
Pd nanoparticles: influence of the biological component in catalytic efficacy
and potential application in ‘green’synthesis of fine chemicals and
pharmaceuticals. Applied Catalysis B: Environmental, 147, 651-665. https://doi.org/10.1016/j.apcatb.2013.09.045
242. D.V.
Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep
eutectic solvents for the extractive desulfurization of fuel, ACS Sustain.
Chem. Eng. 6 (2018) 7525–7531, https://doi.org/10.1021/acssuschemeng.8b00224
243. S.E.
Warrag, C. Pototzki, N.R. Rodriguez, M. van Sint Annaland, M.C. Kroon, C. Held,
G. Sadowski, C.J. Peters, Oil desulfurization using deep eutectic solvents as
sustainable and economical extractants via liquid-liquid extraction:
experimental and PC-SAFT predictions, Fluid Phase Equilib. 467 (2018) 33–44, https://doi.org/10.1016/j.fluid.
2018.03.018
244. H.
Cheng, C. Liu, J. Zhang, L. Chen, B. Zhang, Z. Qi, Screening deep eutectic
solvents for extractive desulfurization of fuel based on COSMO-RS model, Chem.
Eng. Process. Process Intensif. 125 (2018) 246–252, https://doi.org/10.1016/j.cep.2018.02.
006
245. R.
Yusof, E. Abdulmalek, K. Sirat, M.B.A. Rahman, Tetrabutylammonium bromide
(TBABr)-based deep eutectic solvents (DESs) and their physical properties,
Molecules 19 (2014) 8011–8026, https://doi.org/10.3390/molecules19068011
246. Liu,
Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S. N., & Pauli,
G. F. (2018). Natural deep eutectic solvents: properties, applications, and
perspectives. Journal of natural products, 81(3), 679-690. https://doi.org/10.1021/acs.jnatprod.7b00945
247. Paiva,
A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C.
(2014). Natural deep eutectic solvents–solvents for the 21st century. ACS
Sustainable Chemistry & Engineering, 2(5), 1063-1071. https://doi.org/10.1021/sc500096j
248. El-Deen,
A. K., Elmansi, H., Belal, F., & Magdy, G. (2023). Recent advances in
dispersion strategies for dispersive liquid–liquid microextraction from green
chemistry perspectives. Microchemical Journal, 191, 108807. https://doi.org/10.1016/j.microc.2023.108807
249. Z.S.
Gano, F.S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, The novel application of
hydrated metal halide (SnCl2.2H2O)-based deep eutectic solvent for the
extractive desulfurization of liquid fuels, Int. J. Chem. Eng. Appl. 6 (2015)
367–371, https://doi.org/10.
7763/IJCEA.2015.V6.511
250. W.
Jiang, L. Dong, W. Liu, T. Guo, H. Li, S. Yin, W. Zhu, H. Li, Biodegradable
cholinelike deep eutectic solvents for extractive desulfurization of fuel,
Chem. Eng. Process. Process Intensif. 115 (2017) 34–38, https://doi.org/10.1016/j.cep.2017.02.004
251. X.
Wang, W. Jiang, W. Zhu, H. Li, S. Yin, Y. Chang, H. Li, A simple and
cost-effective extractive desulfurization process with novel deep eutectic
solvents, RSC Adv. 6 (2016) 30345–30352, https://doi.org/10.1039/C5RA27266A
252. W.S.A.
Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep
eutectic solvents for effective extractive desulfurization of liquid fuel at
ambient conditions, Chem. Eng. Res. Des. 120 (2017) 271–283, https://doi.org/10.1016/j.cherd.
2017.02.025
253. C.-f.
Mao, R.-x. Zhao, X.-p. Li, Phenylpropanoic acid-based DESs as efficient
extractants and catalysts for the removal of sulfur compounds from oil, Fuel
189 (2017) 400–407, https://doi.org/10.1016/j.fuel.2016.10.113
254. Bolivar,
J. M., Woodley, J. M., & Fernandez-Lafuente, R. (2022). Is enzyme
immobilization a mature discipline? Some critical considerations to capitalize
on the benefits of immobilization. Chemical Society Reviews, 51(15), 6251-6290.
https://doi.org/10.1039/D2CS00083K
255. Chang,
X. X., Mubarak, N. M., Mazari, S. A., Jatoi, A. S., Ahmad, A., Khalid, M., ...
& Nizamuddin, S. (2021). A review on the properties and applications of
chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of
industrial and engineering chemistry, 104, 362-380. https://doi.org/10.1016/j.jiec.2021.08.033
256. Ge,
X., Gu, C., Wang, X., & Tu, J. (2017). Deep eutectic solvents
(DESs)-derived advanced functional materials for energy and environmental
applications: challenges, opportunities, and future vision. Journal of
Materials Chemistry A, 5(18), 8209-8229. https://doi.org/10.1039/C7TA01659J
257. Horváth,
I. T., & Anastas, P. T. (2007). Innovations and green chemistry. Chemical
reviews, 107(6), 2169-2173. https://doi.org/10.1021/cr078380v
258. Ahsan,
H., Islam, S. U., Ahmed, M. B., Lee, Y. S., & Sonn, J. K. (2020).
Significance of green synthetic chemistry from a pharmaceutical perspective.
Current Pharmaceutical Design, 26(45), 5767-5782. https://doi.org/10.2174/1381612826666200928160851
259. Anastas,
P. T., & Williamson, T. C. (1996). Green chemistry: an overview. DOI;
10.1021/bk-1996-0626.ch001
260. Sheldon,
R. A. (2017). The E factor 25 years on: the rise of green chemistry and
sustainability. Green Chemistry, 19(1), 18-43. https://doi.org/10.1039/C6GC02157C
261. Clark,
J. H., Farmer, T. J., Herrero-Davila, L., & Sherwood, J. (2016). Circular
economy design considerations for research and process development in the
chemical sciences. Green Chemistry, 18(14), 3914-3934. https://doi.org/10.1039/C6GC00501B
262. Clarke,
C. J., Tu, W. C., Levers, O., Brohl, A., & Hallett, J. P. (2018). Green and
sustainable solvents in chemical processes. Chemical reviews, 118(2), 747-800. https://doi.org/10.1021/acs.chemrev.7b00571
263. Iravani,
S. (2011). Green synthesis of metal nanoparticles using plants. Green
chemistry, 13(10), 2638-2650. https://doi.org/10.1039/C1GC15386B
264. Hessel,
V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D., Escribà-Gelonch,
M., ... & Sundmacher, K. (2022). Sustainability of green solvents–review
and perspective. Green Chemistry, 24(2), 410-437. https://doi.org/10.1039/D1GC03662A
265. Anastas,
P., & Eghbali, N. (2010). Green chemistry: principles and practice.
Chemical Society Reviews, 39(1), 301-312. https://doi.org/10.1039/B918763B
266. Bhagwat,
P., Amobonye, A., Singh, S., & Pillai, S. (2022). Deep eutectic solvents in
the pretreatment of feedstock for efficient fractionation of polysaccharides:
current status and future prospects. Biomass Conversion and Biorefinery,
12(Suppl 1), 171-195. https://doi.org/10.1007/s13399-021-01745-x
267. Aziz,
M. A. A., Jalil, A. A., Triwahyono, S., & Ahmad, A. (2015). CO 2
methanation over heterogeneous catalysts: Recent progress and future prospects.
Green Chemistry, 17(5), 2647-2663. https://doi.org/10.1039/C5GC00119F
268. Mostafazadeh,
A. K., Karimiestahbanati, M., Diop, A., Adjallé, K., Drogui, P., & Tyagi,
R. D. (2021). Green Chemistry for Green Solvent Production and Sustainability
Toward Green Economy. In Biomass, Biofuels, Biochemicals (pp. 583-636).
Elsevier https://doi.org/10.1016/B978-0-12-821878-5.00017-9
269. M.K.
Hadj-Kali, S. Mulyono, H.F. Hizaddin, I. Wazeer, L. El-Blidi, E. Ali, M.A.
Hashim, I.M. AlNashef, Removal of thiophene from mixtures with n-heptane by
selective extraction using deep eutectic solvents, Ind. Eng. Chem. Res. 55
(2016) 8415–8423, https://doi.org/10.1021/acs.iecr.6b01654
270. C.
Li, J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liu, G. Yang, Extraction
desulfurization of fuels with ‘metal ions’ based deep eutectic solvents
(MDESs), Green Chem. 18 (2016) 3789–3795, https://doi.org/10.1039/C6GC00366D
271. S.E.
Warrag, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, J.I. Siepmann, M.C.
Kroon, C.J. Peters, Separation of thiophene from aliphatic hydrocarbons using
tetrahexylammonium-based deep eutectic solvents as extracting agents, J. Chem.
Eng. Data 62 (2017) 2911–2919, https://doi.org/10.1021/acs.jced.7b00168
272. T.
Khezeli, A. Daneshfar, Synthesis and application of magnetic deep eutectic
solvents: novel solvents for ultrasound assisted liquid-liquid microextraction
of thiophene, Ultrason. Sonochem. 38 (2017) 590–597, https://doi.org/10.1016/j.
ultsonch.2016.08.023
273. H.F.M.
Zaid, F.K. Chong, M.I.A. Mutalib, Extractive deep desulfurization of diesel
using choline chloride-glycerol eutectic-based ionic liquid as a green solvent,
Fuel 192 (2017) 10–17, https://doi.org/10.1016/j.fuel.2016.11.112
274. J.M.
Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an
outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45 (2006)
6962–6984, https://doi.org/10.1002/anie.200503779
275. J.
Yin, J. Wang, Z. Li, D. Li, G. Yang, Y. Cui, A. Wang, C. Li, Deep
desulfurization of fuels based on an oxidation/extraction process with acidic
deep eutectic solvents, Green Chem. 17 (2015) 4552–4559, https://doi.org/10.1039/C5GC00709G
276. H.
Lü, P. Li, C. Deng, W. Ren, S. Wang, P. Liu, H. Zhang, Deep catalytic oxidative
desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep
eutectic solvents (DESs), Chem. Commun. 51 (2015) 10703–10706, https://doi.org/10.1039/c5cc03324a
277. M.
Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao, Q. Wang, Deep oxidative
desulfurization of dibenzothiophene with POM-based hybrid materials in ionic
liquids, Chem. Eng. J. 220 (2013) 328–336, https://doi.org/10.1016/j.cej.2012.11.138
278. Y.
Nie, X. Gong, H. Gao, X. Zhang, S. Zhang, Simultaneous desulfurization and
denitrogen of liquid fuels using two functionalized group ionic liquids, Sci.
China Chem. 57 (2014) 1766–1773, https://doi.org/10.1007/s11426-014-5164-1
279. L.
Hao, M. Wang, W. Shan, C. Deng, W. Ren, Z. Shi, H. Lü, L-proline-based deep
eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of
diesel, J. Hazard. Mater. 339 (2017) 216–222, https://doi.org/10.1016/j.jhazmat.2017.06.050
280. Y.
Nie, Y. Dong, L. Bai, H. Dong, X. Zhang, Fast oxidative desulfurization of fuel
oil using dialkylpyridinium tetrachloroferrates ionic liquids, Fuel 103 (2013)
997–1002, https://doi.org/10.1016/j.fuel.2012.07.071
281. H.
Lü, P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, C. Deng, F. Yang, Synthesis of a
hybrid Anderson-type polyoxometalate in deep eutectic solvents (DESs) for deep
desulphurization of model diesel in ionic liquids (ILs), Chem. Eng. J. 313
(2017) 1004–1009, https://doi.org/10.1016/j.cej.2016.10.140
282. W.
Liu, W. Jiang, W. Zhu, W. Zhu, H. Li, T. Guo, W. Zhu, H. Li, Oxidative
desulfurization of fuels promoted by choline chloride-based deep eutectic
solvents, J. Mol. Catal. A Chem. 424 (2016) 261–268, https://doi.org/10.1016/j.molcata.2016.08.030
283. E.
A. Krisanti, K. Saputra, M.M. Arif, K. Mulia, (2019), Formulation and
characterization of betaine-based deep eutectic solvent for extraction phenolic
compound from spent coffee grounds, AIP Conf. Proc. 2175, 020040-020048. https://doi.org/10.1063/1.5134604
284. Llovell
Ferret, F. L., Alkhatib, I. I., Ferreira, M. L., Alba, C. G., Bahamon, D.,
Pereiro, A. B., ... & Vega, L. F. (2020). Screening of ionic liquids and
deep eutectic solvents for physical CO2 absorption by soft-SAFT using key
performance indicators. J. Chem. Eng. Data. 65, 12, 5844-5861. https://doi.org/10.1021/acs.jced.0c00750
285. D.V.Wagle,
H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep eutectic
solvents for the extractive desulfurization of fuel, ACS Sustain. Chem. Eng. 6
(2018) 7525–7531, https://doi.org/10.1021/acssuschemeng.8b00224
286. Florindo
C., Oliveira F.S., Rebelo L.P.N., Fernandes A.M., Murrucho I.M., (2014),
Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on
Cholinium Chloride and Carboxylic Acids, ACS Sustainable Chem.Eng. 10,
2416-2425. https://doi.org/10.1021/sc500439w
287. El
Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and
properties of deep eutectic solvents: a review. Environmental chemistry
letters, 19, 3397-3408. https://doi.org/10.1007/s10311-021-01225-8
288. Abranches,
D. O., & Coutinho, J. A. (2022). Type V deep eutectic solvents: Design and
applications. Current Opinion in Green and Sustainable Chemistry, 35, 100612. https://doi.org/10.1016/j.cogsc.2022.100612
289. Janicka,
P., Kaykhaii, M., Płotka-Wasylka, J., & Gębicki, J. (2022). Supramolecular
deep eutectic solvents and their applications. Green Chemistry, 24(13),
5035-5045. https://doi.org/10.1039/D2GC00906D
290. El
Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Understanding the
basics and properties of deep eutectic solvents. Deep Eutectic Solvents for
Medicine, Gas Solubilization and Extraction of Natural Substances, 1-40. https://doi.org/10.1007/978-3-030-53069-3_1
291. Sas,
O.G.; Domínguez, I.; González, B. Liquid-liquid extraction of phenolic
compounds from water using ionic liquids: Literature review and new
experimental data using [C2mim]FSI. J. Environ. Manag. 2018, 228, 475–482. https://doi.org/10.1016/j.jenvman.2018.09.042
292. Sas,
O.G.; Sánchez, P.B.; González, B. Removal of phenolic pollutants from
wastewater streams using ionic liquids. Sep. Purif. Technol. 2019, 236, 116310.
https://doi.org/10.1016/j.seppur.2019.116310
293. Wang,
Y.; Wang, X.; Li, H. Treatment of high salinity phenol-laden wastewater using a
sequencing batch reactor containing halophilic bacterial community. Int.
Biodeterior. Biodegrad. 2014, 93, 138–144. https://doi.org/10.1016/j.ibiod.2014.04.010
294. Raza,
W.; Lee, J.; Raza, N. Removal of phenolic compounds from industrial waste water
based on membrane-based technologies.J. Ind. Eng. Chem. 2019, 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024
295. Tri
NL, M.; Thang, P.Q.; Tan, L.V.; Tahtamouni, T.M.A. Removal of phenolic
compounds from wastewaters by using synthesized Fe-nano zeolite. J. Water
Process. Eng. 2020, 33, 101070. https://doi.org/10.1016/j.jwpe.2019.101070
296. Alshabib,
M.; Onaizi, S.A. A review on phenolic wastewater remediation using homogeneous
and heterogeneous enzymatic processes: Current status and potential challenges.
Sep. Purif. Technol. 2019, 219, 186–207. https://doi.org/10.1016/j.seppur.2019.03.028
297. Rispail,
N.; Morris, P.;Webb, K.J. Phenolic compounds extraction and analysis. In Lotus
Japonicus Handbook; Márquez, A.J., Ed.; Springer: Amsterdam, The Netherlands,
2005; pp. 349–354. https://doi.org/10.1007/1-4020-3735-X_34