Abstract View

Author(s): Benvikram Barman, Manoj Kumar Banjare, Bhupendra Singh Banjare, Dolly Baghel

Email(s): benvikrambarman2@gmail.com , manojbanjare7@gmail.com , bhupendra0889@gmail.com , dolly54us@gmail.com.

Address: Department of Chemistry, Govt. Naveen College Thelkadih, Khairagarh-Chhuikhadan-Gandai, (C.G.), 491444, India.
Chemistry Division, State Forensic Science Laboratory, Tikrapara, Pujari Park, Raipur, CG, 492001, India.
Department of Chemistry, Nayak Nityanand Sai Govt. College Aara, Jashpur, CG, 496331, India.
MATS School of Sciences, MATS University, Pagaria Complex, Pandri, Raipur (C.G.), 492004, India.
*Coresponding Author: manojbanjare7@gmail.com
manojbanjarechem111@gmail.com

Published In:   Volume - 38,      Issue - 1,     Year - 2025

DOI: 10.52228/JRUB.2025-38-1-7  

ABSTRACT:
Deep eutectic solvents (DESs) as green solvents and sustainable solvents used as replacements for traditional organic solvents and highly applicable for various purposes due to their good chemical properties, such as depression freezing point, low volatility, being biofriendly in nature, less toxicity, environmental friendliness, non-toxic nature, ability to be recycled, reusability, biodegradability, nontoxicity, low vapour pressure, low flammability, etc. These unique physicochemical properties make them perfect for applications in extraction, catalysts, electrochemistry, biotransformation, extracting bioactive compounds, as a green solvent, for nanomaterial synthesis, for metal extraction, for drug delivery, for gas capture, for therapeutic applications, etc. In this paper review, study their method of preparation, types of DESs and its significance in various fields, along with their salient physicochemical properties. DESs can be synthesised by the mixing of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) chemical molecules with the proper ratio and heating them. Synthesised DESs It’s characterised by spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) techniques, etc. Future research directions are also covered, along with some issues. This analysis offers insights into DES's function in promoting sustainable chemical processes by critically assessing its potential in green chemistry.

Cite this article:
Barman, Banjare, Banjare, and Baghel (2025). Deep Eutectic Solvents in Green Chemistry: A Review. Journal of Ravishankar University (Part-B: Science), 38(1), pp. 90-128. DOI:DOI: https://doi.org/10.52228/JRUB.2025-38-1-7


References

1.   Dai Y., spronsen J.V., Witkamp G., Verpoorte R., Choi Y.H., (2013). Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766,61-68. https://doi.org/10.1016/j.aca.2012.12.019

2.   X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study, Chem. Eur. J. 24 (2018) 11021–11032, https://doi.org/10.1002/chem.201801631

3.   S.E. Warrag, C. Pototzki, N.R. Rodriguez,M. van Sint Annaland, M.C. Kroon, C. Held, G.Sadowski, C.J. Peters, Oil desulfurization using deep eutectic solvents as sustainable and economical extractants via liquid-liquid extraction: experimental and PC-SAFT predictions, Fluid Phase Equilib. 467 (2018) 33–44, https://doi.org/10.1016/j.fluid. 2018.03.018

4.   Lloret J.O., Vega L.F., Lovell L., (2017), Accurate description of thermophysical properties oAf tetraalkylammonium chloride deep eutectic solvents with the soft-SAFT equation of state. J. fluid., 448,81-93. https://doi.org/10.1016/j.fluid.2017.04.013

5.   Banjare, M. K., Barman, B., Behera, K., Khan, J. M., Banjare, R. K., Pandey, S., & Ghosh, K. K. (2024). Molecular interaction between three novel amino acid based deep eutectic solvents with surface active ionic liquid: A comparative study. Heliyon, 10(15). https://doi.org/10.1016/j.heliyon.2024.e35598

6.   Barman, B., & Banjare, M. K. (2024). Synthesis and characterization of biologically active five amino acids based deep eutectic solvents. Alochana Journal, 13, 1. https://doi.org/20.14118.AJ.2024.V13I1.2161

7.   Kumar, A., Banjare, M. K., Yadav, T., Sinha, S., Sahu, R., Satnami, M. L., Ghosh, K. K., Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and gemini surfactants. J. Surfactant Deterg., 21 (2018) 355–366. https://doi.org/10.1002/jsde.12032

8.   Banjare, M. K., Behera, K., Kurrey, R., Banjare, R. K., Satnami, M. L., Pandey, S., Ghosh, K.K., (2018), Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3- methylimidazolium bromide: a comparative study and potential application in antidepressants drug aggregation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 199 376-386. https://doi.org/10.1016/j.saa.2018.03.079

9.   Barman B., Banjare M.K., (2024), Review of green designer deep eutectic solvents (DESs) production and prospective material science applications., Futuristic trends in chemical material science & nano technology, e-ISBN: 978-93-5747-824-3. IIP series, Volume 3, Book 6, part 2, chapter 8. https://doi.org/10.58532/V3BJCS6P2CH8

10.    Alonso D.A., Baeza A., Chinchilla R., Guillena G., Paster I.M., Ramon D.J., (2016), Deep eutectic solvents: The organic reaction medium of the century. Eur.JOC, 4, 612-632. https://doi.org/10.1002/ejoc.201501197

11.    Z. Li, D. Liu, Z.Men, L. Song, Y. Lv, P.Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents:an innovative evaluation criterion to filtrate extractants using compatibility index, Green Chem. 20 (2018) 3112–3120, https://doi.org/10.1039/C8GC00828K.

12.    Alonso, D. A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I. M., & Ramón, D. J. (2016). Deep eutectic solvents: the organic reaction medium of the century. EurJO, 2016(4), 612-632 https://doi.org/10.1002/ejoc.201501197

13.    Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev, 41(21), 7108-7146. https://doi.org/10.1039/C2CS35178A

14.    Sekharan, T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B. S. (2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res. Appl. Chem, 12, 847-860. https://doi.org/10.33263/BRIAC121.847860

15.    E. A. Krisanti, K. Saputra, M.M. Arif, K. Mulia, (2019), Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds, AIP Conf. Proc. 2175, 020040-020048. https://doi.org/10.1063/1.5134604

16.    Llovell Ferret, F. L., Alkhatib, I. I., Ferreira, M. L., Alba, C. G., Bahamon, D., Pereiro, A. B., ... & Vega, L. F. (2020). Screening of ionic liquids and deep eutectic solvents for physical CO2 absorption by soft-SAFT using key performance indicators. J. Chem. Eng. Data. 65, 12, 5844-5861. https://doi.org/10.1021/acs.jced.0c00750

17.    Welton T. (2018), Ionic liquids: a brief history., Biophys.Rev.,10, 691- 706.

18.    Pino V., Afonso AM. (2012), Surface- bonded ionic liquid stationary phases in high- performance liquid chromatography – a review. Analytica Chimica Acta,714:20-37. https://doi.org/10.1016/j.aca.2011.11.045

19.    Werner S, Haumann M, and Wasserscheid P (2010). Ionic liquids in chemical engineering. Annu. Rev. Chem. Biomo. Eng., 1, 203-230. https://doi.org/10.1146/annurev-chembioeng-073009-100915

20.    Shamsuri A.A., Abdullah D.K., (2010), Ionic liquid: preparations and limitations. Makara J. Sci., 14,101-106.

21.    Albert, J., Muller, K. (2014). A group contribution method for the thermal properties of ionic liquids.Ind.Eng.Chem.Res.,53,17522−17526. https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fie503366p&href=/doi/10.1021%2Fie503366p

22.    Zhang S., Sun N., He x., Lu X., Zhang X., (2006), Physical properties of ionic liquids: Database and Evaluation. J. Phys. Chem. Ref. Data, 35, 1475. https://doi.org/10.1063/1.2204959

23.    Tan Z.Q., Liu J.F., Pang L., (2012), Advances in analytical chemistry using the unique properties of ionic liquids. Trends Anal. Chem., 39,218-227. https://doi.org/10.1016/j.trac.2012.06.005

24.    Greer A.J., Jacquemin J., Hardacre C., (2020). Industrial applications of ionic liquids. Molecules. 25,5207. https://doi.org/10.3390/molecules25215207

25.    Leveque J. M., Cravotto G., (2006), Microwaves, Power Ultrasound, and Ionic Liquids. A New Synergy in Green Organic Synthesis. Chimia, 60, 313-320. https://doi.org/10.2533/000942906777836255

26.    Moon, Y.H., Lee, S.M., Ha, S.H., (2006). Enzyme-catalyzed reactions in ionic liquids. Korean J. Chem. Eng. 23, 247–263. https://doi.org/10.1007/BF02705724

27.    Ahmed A. (2020) Sustainable Organic Synthesis in Ionic Liquids. In: Inamuddin, Asiri A. (eds) Applications of Nanotechnology for Green Synthesis. Nanotechnology in the Life Sciences. Springer, Cham. 978-3-030-44176-0_1. https://doi.org/10.1007/978-3-030-44176-0_1

28.    Lindman, B., Puyal, M. C., Kamenka, N., Rymden, R., Stilbs, P. (1984). Micelle formation of anionic and cationic surfactants from Fourier transform proton and lithium-7 nuclear magnetic resonance and tracer self-diffusion studies. J. Phys. Chem. A, 88, 5048−5057. https://doi.org/10.1021/j150665a051

29.    Jiang L, Deng M, Wang Y, Liang D, Yan Y, and Huang J (2009). Special Effect of β-Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems. J. Phys. Chem. B 113, 21, 7498–7504. https://doi.org/10.1021/jp811455f

30.    Fernandez A.S., Leung A.E., Kelley E.G., Jackson A.J., (2021). Complex by design: Hydrotrope – induced micellar growth in deep eutectic solvents. J. Colloid Interface Sci. 581,292-298. https://doi.org/10.1016/j.jcis.2020.07.077\

31.    Sekharan T.R., Chandira R.M., Tamilvanan S., Rajesh S.C., Venkateswarlu B.S., (2022), Deep Eutectic Solvents as an Alternate to other harmful solvents., Biointerface Res. Appl. Chem,12,847-860. https://doi.org/10.33263/BRIAC121.847860

32.    H. Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents, Fuel 225 (2018) 104–110, https://doi.org/10.1016/j.fuel.2018.03.159.

33.    Santos, F.; Leitao P.S., M.I.; C. Duarte, A.R. (2019), Properties of Therapeutic Deep Eutectic Solvents of l-Arginine and Ethambutol for Tuberculosis Treatment. J. Mol. 24, 24010055.  https://doi.org/10.3390/molecules24010055

34.    Zhang Q., Vigier K.D.O., Royer S.,Jerome F., (2012).deep eutectic solvents: synthesis, properties and applications. Chem. Soc. Rev., 41,7108-7146. https://doi.org/10.1039/C2CS35178A

35.    F. Lima, J. Gouvenaux, L.C. Branco, A.J. Silvestre, I.M. Marrucho, Towards a sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using polyethylene  glycol-based deep eutectic solvents, Fuel 234 (2018) 414–421, https://doi.org/10. 1016/j.fuel.2018.07.043

36.    Florindo C., Oliveira F.S., Rebelo L.P.N., Fernandes A.M., Murrucho I.M., (2014), Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids, ACS Sustainable Chem.Eng. 10, 2416-2425. https://doi.org/10.1021/sc500439w

37.    Kumar H., Kaur G., (2021). Scrutinizing self-assembly, surface activity and aggregation behavior of mixtures of imidazolium based ionic liquids and surfactants: A comprehensive Review. Front. Chem., 9, 1-23. https://doi.org/10.3389/fchem.2021.667941

38.    Sanchez-Fernandez, A., Arnold, T., Jackson, A. J., Fussell, S. L., Heenan, R. K., Campbell, R. A., Edler, K. J. (2016). Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 33240−33249. https://doi.org/10.1039/C6CP06053F

39.    Fernandez A. S., Hommond O. S., Jackson A. J., Arnold T., Doutch J., Elder K. J., (2017), Surfactant-Solvent interaction effects on the micellization of cationic surfactants in a carboxylic acid-based deep eutectic solvent, Langmuir,33,14304-14314. https://doi.org/10.1021/acs.langmuir.7b03254

40.    S.E. Warrag, I. Adeyemi, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, M.C. roon, C.J. Peters, Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents, J. Chem. Eng. Data 63 (2018) 1088–1095, https://doi.org/10.1021/acs.jced.7b00832

41.    Alonso, D. A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I. M., & Ramón, D. J. (2016). Deep eutectic solvents: the organic reaction medium of the century. EurJO, 2016(4), 612-632 https://doi.org/10.1002/ejoc.201501197

42.    Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev, 41(21), 7108-7146. https://doi.org/10.1039/C2CS35178A

43.    Sekharan, T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B. S. (2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res. Appl. Chem, 12, 847-860. https://doi.org/10.33263/BRIAC121.847860

44.    Banjare, M. K., & Barman, B. (2024). Effect of biologically active amino acids based deep eutectic solvents on sodium dodecyl sulfate: A comparative spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 308, 123700. https://doi.org/10.1016/j.saa.2023.123700

45.    Tang, Z., Wu, C., Tang, W., Ma, C., & He, Y. C. (2023). A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. Bioresource Technology, 376, 128806. https://doi.org/10.1016/j.biortech.2023.128806

46.    Banjare, R. K., Banjare, M. K., Behera, K., Pandey, S., & Ghosh, K. K. (2020). Micellization behavior of conventional cationic surfactants within glycerol-based deep eutectic solvent. ACS omega, 5(31), 19350-19362. https://doi.org/10.1021/acsomega.0c00866

47.    Banjare, R. K., Banjare, M. K., Behera, K., Tandon, M., Pandey, S., & Ghosh, K. K. (2021). Deep eutectic solvents as modulator on the micellization behaviour of cationic surfactants and potential application in human serum albumin aggregation. Journal of Molecular Liquids, 344, 117864. https://doi.org/10.1016/j.molliq.2021.117864

48.    Banjare, M. K., Behera, K., Satnami, M. L.; Pandey, S., Ghosh, K. K. (2018). Self-assembly of a short-chain ionic liquid within deep eutectic solvents. RSC Adv. 8, 7969−7979. https://doi.org/10.1039/C7RA13557B

49.    Xu, P., Zheng, GW., Zong, MH. et al. (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 4, 34. https://doi.org/10.1186/s40643-017-0165-5

50.    Bajkacz S., Adamek J., Sobska A., (2020). Application of deep eutectic solvents and ionic liquids in the extraction of catechins from tea. Molecules,25,3216. https://doi.org/10.3390/molecules25143216

51.    Liu, Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S. N., Pauli, G. F. (2018). Natural deep eutectic solvents: properties, applications, and perspectives. J. Nat. Prod. 3, 679−690. https://doi.org/10.1021/acs.jnatprod.7b00945 

52.    Pinho, M. R., Lima, A. S., de Almeida Ribeiro Oliveira, G., Liao, L. M., Franceschi, E., Silva, R. D., & Cardozo-Filho, L. (2024). Choline chloride-and organic acids-based deep eutectic solvents: Exploring chemical and thermophysical properties. Journal of Chemical & Engineering Data69(10), 3403-3414. https://doi.org/10.1021/acs.jced.3c00706

53.    Duan L., Dou L.L., Guo L.,Li P.Liu E., (2016). Comprehensive evalution of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chem.Eng., 4, 2405-2411. https://doi.org/10.1021/acssuschemeng.6b00091

54.    Fernandez A.S., Hammond O.S., Jackson A.J., Arnold T., Doutch J., Edler K.J., (2017), Surfactant- solvent interaction effects on the micellization of cationic surfactants in a carboxylic acid- based deep eutectic solvent, Langmur,33,14304-14314. https://doi.org/10.1021/acs.langmuir.7b03254

55.    González-Campos, J. B., Pérez-Nava, A., Valle-Sánchez, M., & Delgado-Rangel, L. H. (2024). Deep eutectic solvents applications aligned to 2030 United Nations Agenda for Sustainable Development. Chemical Engineering and Processing-Process Intensification199, 109751.  https://doi.org/10.1016/j.cep.2024.109751

56.    Długosz, O., & Banach, M. (2024). Green methods for obtaining deep eutectic solvents (DES). Journal of Cleaner Production434, 139914. https://doi.org/10.1016/j.jclepro.2023.139914

57.    Długosz O. (2023), Natural Deep Eutectic Solvents in the Synthesis of Inorganic Nanoparticles. Materials. 16(2):627. https://doi.org/10.3390/ma16020627

58.    Arnodo, D., Maffeis, E., Marra, F., Nejrotti, S., & Prandi, C. (2023). Combination of enzymes and deep eutectic solvents as powerful toolbox for organic synthesis. Molecules, 28(2),516. https://doi.org/10.3390/molecules28020516

59.    Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their         applications. Chemical reviews, 114(21), 11060-11082.  https://doi.org/10.1021/cr300162p

60.    Canadas, R.; González-Miquel, M.; González, E.J. Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Res. Int. 2020, 136, 109558. https://doi.org/10.1016/j.foodres.2020.109558 

61.    Gonzalez, E.J.; Díaz, I.; Gonzalez-Miquel, M. On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Sep. Purif. Technol. 2018, 201, 214–222. https://doi.org/10.1016/j.seppur.2018.03.006

62.    Ni, H.; Dong, J.; Shi, J. Ionic liquid as extraction agent for detection of volatile phenols in wastewater and its regeneration. J. Sep. Sci. 2015, 33, 1356–1359. https://doi.org/10.1002/jssc.200900730

63.    Sas, O.G.; Domínguez, I.; González, B. Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim]FSI. J. Environ. Manag. 2018, 228, 475–482. https://doi.org/10.1016/j.jenvman.2018.09.042

64.    Chen, Y.; Liang, H.; Qin, X. Cheap and biodegradable amino acid-based deep eutectic solvents for radioactive iodine capture via halogen bonds. J. Mol. Liq. 2020, 303, 112615. https://doi.org/10.1016/j.molliq.2020.112615

65.    Maneffa, A.J.; Harrison, A.B.; Radford, S.J. Deep eutectic solvents based on natural ascorbic acid analogues and choline chloride. ChemistryOpen 2020, 9, 559–567. https://doi.org/10.1002/open.202000020

66.    Durand, E., Lecomte, J., & Villeneuve, P. (2013). Deep eutectic solvents: Synthesis, application, and focus on lipase‐catalyzed reactions. Eur J Lipid Sci Technol, 115(4), 379-385. https://doi.org/10.1002/ejlt.201200416

67.    Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L., & Qi, Z. (2020). Overview of acidic deep eutectic solvents on synthesis, properties and applications. GEE, 5(1), 8-21. https://doi.org/10.1016/j.gee.2019.03.002

68.    Banjare, M. K., Behera, K., Satnami, M. L., Pandey, S., & Ghosh, K. K. (2018). Self-assembly of a short-chain ionic liquid within deep eutectic solvents. RSC advances, 8(15), 7969-7979. https://doi.org/10.1039/C7RA13557B

69.    Lakshmi, A.B.; Balasubramanian, A.; Venkatesan, S. Extraction of phenol and chlorophenols using ionic liquid [Bmim]+[BF4], dissolved in tributyl phosphate. CLEAN Soil Air Water. 2013, 41, 349–355. https://doi.org/10.1002/clen.201100632

70.    Dai, Y.; van Spronsen, J.; Witkamp, G.J. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019

71.    Abbott, A.P.; Capper, G.; Davies, D.L. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 9, 70–71. https://doi.org/10.1039/B210714G

72.    Al-Risheq D.I.M., Shaikh S.M.R., Nasser M.S., Almomani F., Hussein I.A., Hassan M.K., Enhancing the flocculation of stable bentonite suspension using hybrid system of polyelectrolytes and NADES J. Col. Surface A Physicochem.And Eng. Aspects, 638,2022,128305. https://doi.org/10.1016/j.colsurfa.2022.128305

73.    P.Abbot A., Ttaib K.E., Frisch G., Electrodeposition of copper composites from deep eutectic solvents based on choline chloride, J. physical chemistry chemical physics., 11,2009, 4269-4277. https://doi.org/10.1039/B817881J

74.    Kudlak B., Owczarek K., Namiesnik J., Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. J. Environment Sci. Pollution Res., 22,2015,11975-11992. https://doi.org/10.1007/s11356-015-4794-y

75.    Nahar y., Thickett S.C., Greener, Faster, Stronger: The Benefits of Deep Eutectic Solvents in Polymer and Materials Science, Polymers, 13(3) 2021, 447. https://doi.org/10.3390/polym13030447

76.    Taghizadeh M., taghizadeh A., Vatanpour V., Ganjali M.R., Saeb M.R., Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective., J. Sep.Pur.Tech., 258,2021,118015. https://doi.org/10.1016/j.seppur.2020.118015

77.    Li X., Row K.H., Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin, J. chromatography B., 1068-1069,2017,56-63. https://doi.org/10.1016/j.jchromb.2017.10.012

78.    Ruesgas- Ramon M., Figueroa- Espinoza M.C., and Durand E., Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities, J. Agric. Food chem., 65,18,2017,3591-3601. https://doi.org/10.1021/acs.jafc.7b01054

79.    Abo-Hamad A., Hayyan M., Alsaadi M.A.H., Hashim M.A., Potential applications of deep eutectic solvents in nanotechnology, J.Chem. Eng. J., 273,2015,551-567. https://doi.org/10.1016/j.cej.2015.03.091

80.    Tang B., Zhang H., Row K.H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples J. Sep. Sci.,38,2015,1053-1064. https://doi.org/10.1002/jssc.201401347

81.    Vigier K.D.O., Chatel G., Jerome F., (2015). Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. Chemcatchem, 7,1250-1260. https://doi.org/10.1002/cctc.201500134

82.    Garcia G., Aparicio S., Ullah R., Atilhan M., (2015). Deep eutectic solvents: physicochemical properties and gas separation applications. Energy & fuels,29,2616-2644. https://doi.org/10.1021/ef5028873

83.    Li X.,Row K.H.,(2016).Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci, 39, 3505-3520. https://doi.org/10.1002/jssc.201600633

84.    Sarmad S., Mikkola J.P., Ji X., (2016). Carbon dioxide capture with ionic liquids and deep eutectic solvents: A new generation of sorbents A review. Chemsuschem, 10, 324-352. https://doi.org/10.1002/cssc.201600987

85.    Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. (2015). Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 5, 48675−48704. https://doi.org/10.1039/C5RA05746A

86.    Zdziennicka A., Szymczyk K., Krawczyk J., Janczuk., (2012). Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase. Equilibria. 322-323,126-134. https://doi.org/10.1016/j.fluid.2012.03.018

87.    Shi Y., Luo H.Q., Li N.B., (2011), Determination of the critical premicelle concentration, first critical micelle concentration and second critical micelle concentration of surfactants by resonance Rayleigh scattering method without any probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 78,1403-1407. https://doi.org/10.1016/j.saa.2011.01.018

88.    El Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental chemistry letters, 19, 3397-3408. https://doi.org/10.1007/s10311-021-01225-8

89.    Zhang, M., Zhang, X., Liu, Y., Wu, K., Zhu, Y., Lu, H., & Liang, B. (2021). Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environmental Science and Pollution Research, 28(27), 35537-35563. https://doi.org/10.1007/s11356-021-14485-2

90.    Li, Q., Jiang, J., Li, G., Zhao, W., Zhao, X., & Mu, T. (2016). The electrochemical stability of ionic liquids and deep eutectic solvents. Science China Chemistry, 59, 571-577. https://doi.org/10.1007/s11426-016-5566-3

91.    Jiang H.J., Atkin R., G. Warr G., Nanostructured ionic liquids and their solutions: Recent advances and emerging challenges, Curr. Opin. Green Sustain. Chem., 12, 2018, 27-32. https://doi.org/10.1016/j.cogsc.2018.05.003

92.    Rahman M. S., Roy R., Montoya, C., Halim M.A., Raynie D. E., Acidic and basic amino acid-based novel deep eutectic solvents and their role in depolymerization of lignin, J. Mol. Liq., 362, 2022, 119751. https://doi.org/10.1016/j.molliq.2022.119751

93.    Li, M., Liu, Y., Hu, F., Ren H., and Duan, E., Amino acid-based natural deep eutectic solvents for extraction of phenolic compounds from aqueous Environments, Processes 2021, 9(10), 1716. https://doi.org/10.3390/pr9101716

94.    A. Zdziennicka, K. Szymczyk, J. Krawczyk, Janczuk, Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization, Fluid Phase Equilibria 322–323 (2012) 126–134. https://doi.org/10.1016/j.fluid.2012.03.018

95.    Y. Shi, H.Q. Luo, N.B. Li, Determination of the critical premicelle concentration, first critical micelle concentration and second critical micelle concentration of surfactants by resonance Rayleigh scattering method without any probe, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (2011) 1403–1407. https://doi.org/10.1016/j.saa.2011.01.018

96.    F. M. Manger, J.U. Rhee, H.K. Rhee, Applications of surfactants to synthetic organic chemistry, J. Org. Chem. 40 (1975) 3803–3805. https://doi.org/10.1021/jo00913a051

97.    Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical communications, (1), 70-71. https://doi.org/10.1039/B210714G

98.    A. P. Abbott, et al. "Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids." Journal of the American Chemical Society, Vol. 126, No. 29, pp. 9142-9147, 2004. https://doi.org/10.1021/ja048266j

99.    M. A. Kareem, F.S. Mjalli, M.A. Hashim, I. M. J. AlNashed "Phosphonium-based ionic liquids analogues and their physical properties" Chem. Eng. Data, Vol. 55, No. 11, pp. 4632-4637, 2010. https://doi.org/10.1021/je100104v

100.     A. P. Abbott, et al. "Eutectic‐based ionic liquids with metal‐containing anions and cations" Chemistry–A European Journal, Vol.13, No. 22, pp. 6495-6501, 2007. https://doi.org/10.1002/chem.200601738

101.     Affat, S. (2024). A review of deep eutectic solvents (DESs), Preparation, Classification, Physicochemical properties, Advantages and disadvantages. University of Thi-Qar Journal of Science, 11(1), 166-174. https://doi.org/10.32792/utq/utjsci/v11i1.1208

102.     A. Bhardwaj, S. Hartland, Applications of surfactants in petroleum industry, J. Dispers. Sci. Technol. 14 (1993) 87–116. https://doi.org/10.1080/01932699308943389

103.     M. Abe, Synthesis and applications of surfactants containing fluorine, Curr. Opin. Colloid Interface Sci. 4 (1999) 354–356. https://doi.org/10.1016/S1359-0294(99)90017-1

104.     M. Summers, J. Eastoe, Applications of polymerizable surfactants, Adv. Colloid Interface Sci. 100–102 (2003) 137–152. https://doi.org/10.1016/S0001-8686(02)00058-1

105.     B. Lindman, M.C. Puyal, N. Kamenka, R. Rymden, P. Stilbs, Micelle formation of anionic and cationic surfactants from Fourier transform proton and lithium-7 nuclear magnetic resonance and tracer self-diffusion studies, J. Phys. Chem. A 88 (1984) 5048–5057. https://doi.org/10.1021/j150665a051

106.     A. Sanchez-Fernandez, T. Arnold, A.J. Jackson, S.L. Fussell, R.K. Heenan, R. A. Campbell, K.J. Edler, Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent, Phys. Chem. Chem. Phys. 18 (2016) 33240–33249. https://doi.org/10.1039/C6CP06053F

107.     K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents, Fuel 234 (2018) 1388–1400, https://doi.org/10.1016/j.fuel.2018.08.005.

108.     García, G., Aparicio, S., Ullah, R., & Atilhan, M. (2015). Deep eutectic solvents: physicochemical properties and gas separation applications. Energy & Fuels, 29(4), 2616-2644. https://doi.org/10.1021/ef5028873

109.     D. J. G. P Van Osch, C. H. J. T. Dietz, S. E. E. Warrag, M. C. Kroon "The curious case of hydrophobic deep eutectic solvents: a story on the discovery, design, and applications" ACS Sustain. Chem. Eng., Vol. 8, 2020. https://doi.org/10.1021/acssuschemeng.0c00559

110.     Y. Dai, J. Van Spronsen, G. J. Witkamp, R. Verpoorte, Y. H. Choi "Natural deep eutectic solvents as new potential media for green technology" Anal. Chim. Acta , Vol. 766, pp. 61-68, 2013. https://doi.org/10.1016/j.aca.2012.12.019

111.     R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, S. Ibrahim, A. Hayyan, M. A. Hashim "Physical properties of ethylene glycol-based deep eutectic solvents, J. Mol. Liq. pp. 276 794-800, 2019. https://doi.org/10.1016/j.molliq.2018.12.032

112.     M. A. R. Martins, E. A. Crespo, P. V. A. Pontes, L. P. Silva, M. Bülow, G. J. Maximo, E. A. C. Batista, C. Held, S. P. Pinho, J. A. P Coutinho "Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids" ACS Sustain. Chem. Eng, Vol. 6, pp. 8836-8846, 2018. https://doi.org/10.1021/acssuschemeng.8b01203

113.     W. Guo, Y. Hou, S. Ren, S. Tian, W. Wu "Formation of deep eutectic solvents by phenols and choline chloride and their physical properties, J. Chem. Eng. Data, Vol. 58, pp. 866-872, 2013. https://doi.org/10.1021/je300997v

114.     W. Lu, S. Liu, Z. Wu "Recent application of deep eutectic solvents as green solvent in dispersive liquid-liquid microextraction of trace level 173 chemical contaminants in food and water" Crit. Rev. Anal. Chem. , Vol. 52, pp. 504-518, 2022. https://doi.org/10.1080/10408347.2020.1808947

115.     L. Nakhle, M. Kfoury, I. Mallard, D. Landy, H. Greige-Gerges "Microextraction of bioactive compounds using deep eutectic solvents: a review" Environ. Chem. Lett., Vol. 19, pp. 3747-3759, 2021. https://doi.org/10.1007/s10311-021-01255-2

116.     Y. Chen, W. Chen, L. Fu, Y. Yang, Y. Wang, X. Hu, F. Mu. T. Wang "Surface tension of 50 deep eutectic solvents: effect of hydrogen-bonding donors, hydrogen-bonding acceptors, other solvents, and temperature" Ind. Eng. Chem. Res., Vol. 58, pp. 12741-12750, 2019. https://doi.org/10.1021/acs.iecr.9b00867

117.     Fukuzumi, S., Lee, Y. M., & Nam, W. (2019). Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Transactions48(26), 9469-9489. https://doi.org/10.1039/C9DT01402K

118.     D.E. Crawford, L.A. Wright, S.L. James, A.P. Abbott., Chem. Commun. 52, (2016), 4215-4218. https://doi.org/10.1039/C5CC09685E

119.     Manikandan, V., & Lee, N. Y. (2022). Green synthesis of carbon quantum dots and their environmental applications. Environmental Research212, 113283. https://doi.org/10.1016/j.envres.2022.113283

120.     B. Tang, W. Bi, H. Zhang, K. H. Row "Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtuse leaves" Chromatographia, Vo.l. 77, 373-377, 2014. https://doi.org/10.1007/s10337-013-2607-3

121.     L. Nakhle, M. Kfoury, I. Mallard, D. Landy, H. Greige-Gerges "Microextraction of bioactive compounds using deep eutectic solvents: a review" Environ. Chem. Lett., Vol. 19, pp. 3747-3759, 2021. https://doi.org/10.1007/s10311-021-01255-2

122.     Ren, S., Mu, T., & Wu, W. (2023). Advances in deep eutectic solvents: New green solvents. Processes11(7), 1920. https://doi.org/10.3390/pr11071920

123.     Sitze, S. Melissa, et al. "Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations" Inorganic chemistry, Vol. 40, No. 10, pp. 2298-2304, 2001. https://doi.org/10.1021/ic001042r

124.     Eliel, E. L., & Mosher, H. S. (1975). The 1975 Nobel Prize for Chemistry. Science190(4216), 772-774. https://doi.org/10.1126/science.190.4216.772

125.     T. B Scheffler, M. S. Thomson, In Seventh International Conference on Molten Salts; The Electrochemical Society: Montreal, p 281, 1990. https://doi.org/10.1016/0013-4686(96)00080-1

126.     El Abedin, S. Zein, et al. "Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures." Electrochimica Acta, Vol. 52, No. 8, pp. 2746-2754, 2007. https://doi.org/10.1016/j.electacta.2006.08.064

127.     S. A. Bolkan, , and T. J. Yoke. "Room temperature fused salts based on copper (I) chloride-1-methyl-3-ethylimidazolium chloride mixtures. 1. Physical properties" Journal of Chemical and Engineering Data, pp. 194-197, 1986. https://doi.org/10.1021/je00044a019

128.     Yang, Jia-Zhen, et al. "Studies on mixture of ionic liquid EMIGaCl4 and EMIC." Fluid Phase Equilibria, Vol. 227, No. 1, pp. 41- 46, 2005. https://doi.org/10.1016/j.fluid.2004.10.026

129.     L. Emma, Smith, A.P. Abbott and S. Karl, S. Ryder "Deep eutectic solvents (DESs) and their applications, Chemical. Reviews, Vol.114, pp.11060−11082, 2014. https://doi.org/10.1021/cr300162p

130.     Piemontese, L., Sergio, R., Rinaldo, F., Brunetti, L., Perna, F. M., Santos, M. A., & Capriati, V. (2020). Deep eutectic solvents as effective reaction media for the synthesis of 2-hydroxyphenylbenzimidazole-based scaffolds en route to donepezil-like compounds. Molecules, 25(3), 574. https://doi.org/10.3390/molecules25030574

131.     Leron, R. B., Soriano, A. N., & Li, M. H. (2012). Densities and refractive indices of the deep eutectic solvents (choline chloride+ ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15 K. Journal of the Taiwan Institute of Chemical Engineers, 43(4), 551-557. https://doi.org/10.1016/j.jtice.2012.01.007

132.     Li, C. J., & Anastas, P. T. (2012). Green Chemistry: present and future. Chemical Society Reviews41(4), 1413-1414. https://doi.org/10.1039/C1CS90064A

133.     M.K.H. Kali, K.E.A. Khidir, I. Wazeer, L.E. Blidi, S. Mulyono, I.M. AlNashef, Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery, Col. Surfa. A 487 (2015) 221–231. https://doi.org/10.1016/j.colsurfa.2015.10.005

134.     M. Pal, R. Rai, A. Yadav, R. Khanna, G.A. Baker, S. Pandey, Self-Aggregation of Sodium Dodecyl Sulfate within (Choline Chloride + Urea) Deep Eutectic Solvent, Langmuir 30 (44) (2014) 13191–13198. https://doi.org/10.1021/la5035678

135.     T. Arnold, A.J. Jackson, A. Sanchez-Fernandez, D. Magnone, A.E. Terry, K.J. Edler, Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/ Urea, Langmuir 31 (47) (2015) 12894–12902. https://doi.org/10.1021/acs.langmuir.5b02596

136.     Tucker, J. L. (2006). Green chemistry, a pharmaceutical perspective. Organic process research & development10(2), 315-319. https://doi.org/10.1021/op050227k

137.     Vigier, K. D. O., Chatel, G., & Jérôme, F. (2015). Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem, 7(8), 1250-1260. https://doi.org/10.1002/cctc.201500134

138.     Sekharan, T. R., Chandira, R. M., Tamilvanan, S., Rajesh, S. C., & Venkateswarlu, B. S. (2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res. Appl. Chem, 12(1), 847-860. https://doi.org/10.33263/BRIAC121.847860

139.     Płotka-Wasylka, J., De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 159, 105539. https://doi.org/10.1016/j.microc.2020.105539

140.     Canales, R. I., & Brennecke, J. F. (2016). Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. Journal of Chemical & Engineering Data, 61(5), 1685-1699. https://doi.org/10.1021/acs.jced.6b00077

141.     Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6), 628-638. https://doi.org/10.1016/j.crci.2018.04.002

142.     M.K. Banjare, R. Kurrey, T. Yadav, S. Sinha, M.L. Satnami, K.K. Ghosh, A comparative study on the effect of imidazolium-based ionic liquid on self-aggregation of cationic, anionic and nonionic surfactants studied by surface tension, conductivity, fluorescence and FTIR spectroscopy, J. Mol. Liq. 241 (2017) 622–632. https://doi.org/10.1016/j.molliq.2017.06.009

143.     Lima, F., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2021). Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?. Fuel, 293, 120297. https://doi.org/10.1016/j.fuel.2021.120297

144.     A. Kumar, M.K. Banjare, T. Yadav, S. Sinha, R. Sahu, M.L. Satnami, K.K. Ghosh, Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and gemini surfactants, J. Surfactant Deterg. 21 (2018) 355–366. https://doi.org/10.1002/jsde.12032

145.     R.K. Banjare, M.K. Banjare, S. Panda, Effect of acetonitrile on the colloidal behavior of conventional cationic surfactants: a combined conductivity, surface tension, fluorescence and FTIR study, J. Solution Chem. 49 (2020) 34–51. https://doi.org/10.1007/s10953-019-00937-4

146.     M.K. Banjare, K. Behera, R. Kurrey, R.K. Banjare, M.L. Satnami, S. Pandey, K. K. Ghosh, Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3- methylimidazolium bromide: a comparative study and potential application in antidepressants drug aggregation, Spectrochim. Acta A 199 (2018) 376–386. https://doi.org/10.1016/j.saa.2018.03.079

147.     Kalidindi, S. B., & Jagirdar, B. R. (2012). Nanocatalysis and prospects of green chemistry. ChemSusChem5(1), 65-75. https://doi.org/10.1002/cssc.201100377

148.     M.A. Rub, N. Azum, D. Kumar, A.M. Asiri, Interaction of TX-100 and antidepressant imipramine hydrochloride drug mixture: surface tension, 1H-NMR, and FTIR, Gels 8 (2022) 159. https://doi.org/10.3390/gels8030159

149.     A. Goel, S. Tomar, S. Tomar, A facile synthesis and characterization of surfactant (CTAB/TSC/TX-100) assisted Ir-Sn bimetallic nanoparticles, J. Nanostruct. 10 (2020) 846–862. https://doi.org/10.22052/JNS.2020.04.018

150.     Prabhune, A., & Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids379, 121676. https://doi.org/10.1016/j.molliq.2023.121676

151.     Afonso, J., Mezzetta, A., Marrucho, I. M., & Guazzelli, L. (2023). History repeats itself again: Will the mistakes of the past for ILs be repeated for DESs? From being considered ionic liquids to becoming their alternative: The unbalanced turn of deep eutectic solvents. Green Chemistry25(1), 59-105. https://doi.org/10.1039/D2GC03198A

152.     A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Application of deep eutectic solvents in analytical chemistry, A review. Microchem. J. 135 (2017) 33–38. https://doi.org/10.1016/j.microc.2017.07.015

153.     Merza, F., Fawzy, A., AlNashef, I., Al-Zuhair, S., & Taher, H. (2018). Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Reports, 4, 77-83. https://doi.org/10.1016/j.egyr.2018.01.005

154.     M.S. Kamal, I.A. Hussein, A.S. Sultan, Review on surfactant flooding: phase behavior, retention, IFT, and field applications, Energy Fuels 31 (2017) 7701–7720. https://doi.org/10.1021/acs.energyfuels.7b00353

155.     Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews41(4), 1437-1451. https://doi.org/10.1039/C1CS15219J

156.     Hjeresen, D. L., Boese, J. M., & Schutt, D. L. (2000). Green chemistry and education. Journal of Chemical Education77(12), 1543. https://doi.org/10.1021/ed077p1543

157.     M. Pal, R.K. Singh, S. Pandey, Evidence of self-aggregation of cationic surfactants in a choline chloride+ glycerol deep eutectic solvent, Chem. Phys. Chem. 16 (2015) 2538–2542. https://doi.org/10.1002/cphc.201500357

158.     Zhang, Y.; Li, Z.;Wang, H. Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents. Sep. Purif. Technol. 2016, 163, 310–318. https://doi.org/10.1016/j.seppur.2016.03.014

159.     Martinez, R.; Berbegal, L.; Guillena, G. Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents. Green Chem. 2016, 47, 1724–1730. https://doi.org/10.1039/C5GC02526E

160.     Shishov, A.; Pochivalov, A.; Nugbienyo, L. Deep eutectic solvents are not only effective extractants. TrAC Trends Anal. Chem. 2020, 219, 115956. https://doi.org/10.1016/j.trac.2020.115956

161.     Herrmann, J. M., Duchamp, C., Karkmaz, M., Hoai, B. T., Lachheb, H., Puzenat, E., & Guillard, C. (2007). Environmental green chemistry as defined by photocatalysis. Journal of hazardous materials146(3), 624-629. https://doi.org/10.1016/j.jhazmat.2007.04.095

162.     Mako, P.; Supek, E.; Gbicki, J. Hydrophobic deep eutectic solvents in microextraction techniques—A review. Microchem. J. 2019, 152, 104384. https://doi.org/10.1016/j.microc.2019.104384

163.     Mei, X.; Li, J.; Jing, C.; Fang, C. Separation and recovery of phenols from an aqueous solution by a green membrane system. J. Clean. Prod. 2019, 251, 119675. https://doi.org/10.1016/j.jclepro.2019.119675

164.     Zhang, M.; Zhang, Z.; Liu, S. Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrason. Sonochem. 2020, 65, 105058. https://doi.org/10.1016/j.ultsonch.2020.105058

165.     Florindo, C.; Monteiro, N.V.; Ribeiro, B.D. Hydrophobic deep eutectic solvents for purification of water contaminated with bisphenol-a. J. Mol. Liq. 2020, 297, 111841. https://doi.org/10.1016/j.molliq.2019.111841

166.     Florindo, C.; Branco, L.C.; Marrucho, I.M. Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib. 2017, 448, 135–142. https://doi.org/10.1016/j.fluid.2017.04.002

167.     De Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal27(1), 1-8. https://doi.org/10.1016/j.jsps.2018.07.011

168.     Clark, J. H. (2002). Solid acids for green chemistry. Accounts of chemical research35(9), 791-797. https://doi.org/10.1021/ar010072a

169.     Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z. Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions. Fluid Phase Equilib. 2017, 441, 43–48.

170.     Ma, C.; Guo, Y.; Li, D. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water. Chem. Thermodyn. 2017, 105, 30–36.

171.     Dai, Y.;Witkamp, G.J.; Verpoorte, R. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19.

172.     Ji, Y.; Hou, Y.; Ren, S. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction. Fuel 2019, 239, 926–934.

173.     Zhang, Y.; Chang, C.; Tan, B. Application of a Sustainable Bioderived Solvent (Biodiesel) for Phenol Extraction. ACS Omega 2019, 4, 10431–10437.

174.     Galbe, M., & Wallberg, O. (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for biofuels, 12(1), 294.

175.     Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., ... & Yu, H. (2017). Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave‐assisted treatment with deep eutectic solvent. ChemSusChem, 10(8), 1692-1700.

176.     Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K. K., ... & Zhang, X. (2016). Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green chemistry, 18(19), 5133-5141.

177.     Płotka-Wasylka, J., De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 159, 105539.

178.     Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340-362.

179.     Zhou, L., Zhang, M., Huo, Y., Bai, L., He, S., Wang, J., ... & Guo, X. (2022). Green Energy Environ. 2022. press. https://doi.org/10.1016/j.gee,3 

180.     Rasmussen, H., Sørensen, H. R., & Meyer, A. S. (2014). Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydrate research, 385, 45-57.

181.     Feng, Y., Li, M., Gao, Z., Zhang, X., Zeng, X., Sun, Y., ... & Lin, L. (2019). Development of betaine‐based sustainable catalysts for green conversion of carbohydrates and biomass into 5‐hydroxymethylfurfural. ChemSusChem, 12(2), 495-502.

182.     Gomes, G. R., & Pastre, J. C. (2020). Microwave-assisted HMF production from water-soluble sugars using betaine-based natural deep eutectic solvents (NADES). Sustainable Energy & Fuels, 4(4), 1891-1898.

183.     Araji, N., Madjinza, D. D., Chatel, G., Moores, A., Jérôme, F., & Vigier, K. D. O. (2017). Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chemistry, 19(1), 98-101.

184.     Mao, C., Zhao, R., Li, X., & Gao, X. (2017). Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil. RSC advances, 7(21), 12805-12811. https://doi.org/10.1039/C6RA28448E

185.     Müller, C. R., Meiners, I., & de Maria, P. D. (2014). Highly enantioselective tandem enzyme–organocatalyst crossed aldol reactions with acetaldehyde in deep-eutectic-solvents. RSC Advances, 4(86), 46097-46101. https://doi.org/10.1039/C4RA09307K

186.     Omar, K. A., & Sadeghi, R. (2022). Physicochemical properties of deep eutectic solvents: A review. Journal of Molecular Liquids, 360, 119524. https://doi.org/10.1016/j.molliq.2022.119524

187.     Mulyono, S., Hizaddin, H. F., Alnashef, I. M., Hashim, M. A., Fakeeha, A. H., & Hadj-Kali, M. K. (2014). Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide+ sulfolane) deep eutectic solvent–experiments and COSMO-RS prediction. Rsc Advances, 4(34), 17597-17606. https://doi.org/10.1039/C4RA01081G

188.     Huang, W., Wang, H., Hu, W., Yang, D., Yu, S., Liu, F., & Song, X. (2021). Degradation of polycarbonate to produce bisphenol A catalyzed by imidazolium-based DESs under metal-and solvent-free conditions. RSC advances, 11(3), 1595-1604. https://doi.org/10.1039/D0RA09215K

189.     Juneidi, I., Hayyan, M., & Hashim, M. A. (2015). Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Advances, 5(102), 83636-83647. https://doi.org/10.1039/C5RA12425E

190.     Cardellini, F., Germani, R., Cardinali, G., Corte, L., Roscini, L., Spreti, N., & Tiecco, M. (2015). Room temperature deep eutectic solvents of (1 S)-(+)-10-camphorsulfonic acid and sulfobetaines: Hydrogen bond-based mixtures with low ionicity and structure-dependent toxicity. RSC Advances, 5(40), 31772-31786. https://doi.org/10.1039/C5RA03932K

191.     Kali M.K.H., Khidir K.E.A., Wazeer I., Blidi L.E., Mulyono S., AlNashef I.M. (2015), Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery, Col. Surfa. 487, 221-231. https://doi.org/10.1016/j.colsurfa.2015.10.005

192.     Sheldon, R. A. (2018). Metrics of green chemistry and sustainability: past, present, and future. ACS Sustainable Chemistry & Engineering6(1), 32-48. https://doi.org/10.1021/acssuschemeng.7b03505

193.     Nguyen, D., Van Huynh, T., Nguyen, V. S., Cao, P. L. D., Nguyen, H. T., Wei, T. C., ... & Nguyen, P. T. (2021). Choline chloride-based deep eutectic solvents as effective electrolytes for dye-sensitized solar cells. RSC advances, 11(35), 21560-21566. https://doi.org/10.1039/D1RA03273A

194.     Fan, K., Yang, B., Yu, S., Yang, R., Zhang, L., Chi, W., ... & Guo, J. (2023). Ternary choline chloride/benzene sulfonic acid/ethylene glycol deep eutectic solvents for oxidative desulfurization at room temperature. RSC advances, 13(37), 25888-25894. https://doi.org/10.1039/D3RA02524A

195.     Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science297(5582), 807-810. https://doi.org/10.1126/science.297.5582.807

196.     Mulvihill, M. J., Beach, E. S., Zimmerman, J. B., & Anastas, P. T. (2011). Green chemistry and green engineering: a framework for sustainable technology development. Annual review of environment and resources36(1), 271-293. https://doi.org/10.1146/annurev-environ-032009-095500

197.     Tobiszewski, M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015). Green chemistry metrics with special reference to green analytical chemistry. Molecules20(6), 10928-10946. https://doi.org/10.3390/molecules200610928

198.     Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019

199.     Cunha, S. C., & Fernandes, J. O. (2018). Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry, 105, 225-239. https://doi.org/10.1016/j.trac.2018.05.001

200.     Chandran, D., Khalid, M., Walvekar, R., Mubarak, N. M., Dharaskar, S., Wong, W. Y., & Gupta, T. C. S. M. (2019). Deep eutectic solvents for extraction-desulphurization: A review. Journal of Molecular Liquids, 275, 312-322. https://doi.org/10.1016/j.molliq.2018.11.051

201.     Torregrosa-Crespo, J., Marset, X., Guillena, G., Ramón, D. J., & Martínez-Espinosa, R. M. (2020). New guidelines for testing “Deep eutectic solvents” toxicity and their effects on the environment and living beings. Science of the Total Environment, 704, 135382. https://doi.org/10.1016/j.scitotenv.2019.135382

202.     Pätzold, M., Siebenhaller, S., Kara, S., Liese, A., Syldatk, C., & Holtmann, D. (2019). Deep eutectic solvents as efficient solvents in biocatalysis. Trends in biotechnology, 37(9), 943-959.

203.     Laird, T. (2012). Green chemistry is good process chemistry. Organic Process Research & Development16(1), 1-2. https://doi.org/10.1021/op200366y

204.     Li, C. J., & Trost, B. M. (2008). Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences105(36), 13197-13202. https://doi.org/10.1073/pnas.0804348105

205.     Lei, Z., Chen, B., Koo, Y. M., & MacFarlane, D. R. (2017). Introduction: ionic liquids. Chemical Reviews, 117(10), 6633-6635. https://doi.org/10.1021/acs.chemrev.7b00246

206.     X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mechanisms of aromatic acid based deep eutectic solvents: an experimental and theoretical study, Chem. Eur. J. 24 (2018) 11021–11032, https://doi.org/10.1002/chem. 201801631.

207.     Bjelić, A., Hočevar, B., Grilc, M., Novak, U., & Likozar, B. (2022). A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes. Reviews in Chemical Engineering38(3), 243-272. https://doi.org/10.1515/revce-2019-0077

208.     Z. Li, D. Liu, Z. Men, L. Song, Y. Lv, P. Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: an innovative evaluation criterion to filtrate extractants using compatibility index, Green Chem. 20 (2018) 3112–3120, https://doi.org/10.1039/C8GC00828K

209.     H. Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents, Fuel 225 (2018) 104–110, https://doi.org/10.1016/j.fuel.2018.03.159

210.     Ganesh, K. N., Zhang, D., Miller, S. J., Rossen, K., Chirik, P. J., Kozlowski, M. C., ... & Voutchkova-Kostal, A. M. (2021). Green chemistry: a framework for a sustainable future. Environmental Science & Technology55(13), 8459-8463. https://doi.org/10.1021/acs.est.1c03762

211.     T. Al-Wahaibi, Y. Al-Wahaibi, I.M. AlNashef, Deep oxidative desulfurization of liquid fuels, Rev. Chem. Eng. 30 (2014) 337–378, https://doi.org/10.1515/revce-2014-0001

212.     J.M. Campos-Martin, M.d.C. Capel-Sanchez, P. Perez-Presas, J. Fierro, Oxidative processes of desulfurization of liquid fuels, J. Chem. Technol. Biotechnol. 85 (2010) 879–890, https://doi.org/10.1002/jctb.2371

213.     Beach, E. S., Cui, Z., & Anastas, P. T. (2009). Green Chemistry: A design framework for sustainability. Energy & Environmental Science2(10), 1038-1049. https://doi.org/10.1039/B904997P

214.     Mbous, Y. P., Hayyan, M., Hayyan, A., Wong, W. F., Hashim, M. A., & Looi, C. Y. (2017). Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnology advances, 35(2), 105-134. https://doi.org/10.1016/j.biotechadv.2016.11.006

215.     Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica acta, 51(26), 5567-5580. https://doi.org/10.1016/j.electacta.2006.03.016

216.     Lima, F., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2021). Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?. Fuel, 293, 120297. https://doi.org/10.1016/j.fuel.2021.120297

217.     Pandey, S. (2006). Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica chimica acta, 556(1), 38-45. https://doi.org/10.1016/j.aca.2005.06.038

218.     Merza, F., Fawzy, A., AlNashef, I., Al-Zuhair, S., & Taher, H. (2018). Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Reports, 4, 77-83. https://doi.org/10.1016/j.egyr.2018.01.005

219.     Berthod, A., Ruiz-Angel, M. J., & Carda-Broch, S. (2008). Ionic liquids in separation techniques. Journal of Chromatography A, 1184(1-2), 6-18. https://doi.org/10.1016/j.chroma.2007.11.109

220.     Anastas, P. T. (1999). Green chemistry and the role of analytical methodology development. Critical reviews in analytical chemistry29(3), 167-175. https://doi.org/10.1080/10408349891199356

221.     S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, Imidazolium ionic liquid as energy efficient solvent for desulfurization of liquid fuel, Sep. Purif. Technol. 155 (2015) 101–109, https://doi.org/10.1016/j.seppur.2015.05.032

222.     W.N.A.W. Mokhtar, W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: optimization by Box– Behnken design, J. Taiwan Inst. Chem. Eng. 45 (2014) 1542–1548, https://doi.org/10.1016/j.jtice.2014.03.017

223.     Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063-1071. https://doi.org/10.1021/sc500096j

224.     Keskin, S., Kayrak-Talay, D., Akman, U., & Hortaçsu, Ö. (2007). A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids, 43(1), 150-180. https://doi.org/10.1016/j.supflu.2007.05.013

225.     Craveiro, R., Aroso, I., Flammia, V., Carvalho, T., Viciosa, M. T., Dionísio, M., ... & Paiva, A. (2016). Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 215, 534-540. https://doi.org/10.1016/j.molliq.2016.01.038

226.     Nian, B., & Li, X. (2022). Can deep eutectic solvents be the best alternatives to ionic liquids and organic solvents: A perspective in enzyme catalytic reactions. International journal of biological macromolecules, 217, 255-269. https://doi.org/10.1016/j.ijbiomac.2022.07.044

227.     W.S.A. Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions, Chem. Eng. Res. Des. 120 (2017) 271–283, https://doi.org/10.1016/j.cherd.2017.02.025

228.     Płotka Wasylka, J. De la Guardia, M., Andruch, V., & Vilková, M. (2020). Deep eutectic solvents V/S ionic liquids: Similarities and differences. Microchemical Journal, 159, 105539. https://doi.org/10.1016/j.microc.2020.105539

229.     Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A: General, 222(1-2), 101-117. https://doi.org/10.1016/S0926-860X(01)00834-1

230.     C.-f. Mao, R.-x. Zhao, X.-p. Li, Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil, Fuel 189 (2017) 400–407, https://doi.org/10.1016/j.fuel.2016.10.113

231.     Cao, J., & Su, E. (2021). Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production, 314, 127965. https://doi.org/10.1016/j.jclepro.2021.127965

232.     Perna, F. M., Vitale, P., & Capriati, V. (2020). Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 21, 27-33. https://doi.org/10.1016/j.cogsc.2019.09.004

233.     Hou, Y. C., Yao, C. F., & Wu, W. Z. (2018). Deep eutectic solvents: green solvents for separation applications. Acta Phys.-Chim. Sin, 34(8), 873-885. doi: 10.3866/PKU.WHXB201802062

234.     R. Yusof, E. Abdulmalek, K. Sirat, M.B.A. Rahman, Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties, Molecules 19 (2014) 8011–8026, https://doi.org/10.3390/molecules19068011

235.     Welton, T. (2004). Ionic liquids in catalysis. Coordination chemistry reviews, 248(21-24), 2459-2477. https://doi.org/10.1016/j.ccr.2004.04.015

236.     Schuur, B., Brouwer, T., Smink, D., & Sprakel, L. M. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18, 57-65. https://doi.org/10.1016/j.cogsc.2018.12.009

237.     S.E. Warrag, I. Adeyemi, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, M.C. Kroon, C.J. Peters, Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents, J. Chem. Eng. Data 63 (2018) 1088–1095. https://doi.org/10.1021/acs.jced.7b00832

238.     F. Lima, J. Gouvenaux, L.C. Branco, A.J. Silvestre, I.M. Marrucho, Towards a sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel 234 (2018) 414–421, https://doi.org/10. 1016/j.fuel.2018.07.043

239.     K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents, Fuel 234 (2018) 1388–1400, https://doi.org/10.1016/j.fuel.2018.08.005

240.     X.-L. Tang, L. Shi, Study of the adsorption reactions of thiophene on Cu (I)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: adsorption, desorption, and sorbent regeneration mechanisms, Langmuir 27 (2011) 11999–12007, https://doi.org/10.1021/la2025654

241.     Deplanche, K., Bennett, J. A., Mikheenko, I. P., Omajali, J., Wells, A. S., Meadows, R. E., ... & Macaskie, L. E. (2014). Catalytic activity of biomass-supported Pd nanoparticles: influence of the biological component in catalytic efficacy and potential application in ‘green’synthesis of fine chemicals and pharmaceuticals. Applied Catalysis B: Environmental, 147, 651-665. https://doi.org/10.1016/j.apcatb.2013.09.045

242.     D.V. Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel, ACS Sustain. Chem. Eng. 6 (2018) 7525–7531, https://doi.org/10.1021/acssuschemeng.8b00224

243.     S.E. Warrag, C. Pototzki, N.R. Rodriguez, M. van Sint Annaland, M.C. Kroon, C. Held, G. Sadowski, C.J. Peters, Oil desulfurization using deep eutectic solvents as sustainable and economical extractants via liquid-liquid extraction: experimental and PC-SAFT predictions, Fluid Phase Equilib. 467 (2018) 33–44, https://doi.org/10.1016/j.fluid. 2018.03.018

244.     H. Cheng, C. Liu, J. Zhang, L. Chen, B. Zhang, Z. Qi, Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model, Chem. Eng. Process. Process Intensif. 125 (2018) 246–252, https://doi.org/10.1016/j.cep.2018.02. 006

245.     R. Yusof, E. Abdulmalek, K. Sirat, M.B.A. Rahman, Tetrabutylammonium bromide (TBABr)-based deep eutectic solvents (DESs) and their physical properties, Molecules 19 (2014) 8011–8026, https://doi.org/10.3390/molecules19068011

246.     Liu, Y., Friesen, J. B., McAlpine, J. B., Lankin, D. C., Chen, S. N., & Pauli, G. F. (2018). Natural deep eutectic solvents: properties, applications, and perspectives. Journal of natural products, 81(3), 679-690. https://doi.org/10.1021/acs.jnatprod.7b00945

247.     Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063-1071. https://doi.org/10.1021/sc500096j

248.     El-Deen, A. K., Elmansi, H., Belal, F., & Magdy, G. (2023). Recent advances in dispersion strategies for dispersive liquid–liquid microextraction from green chemistry perspectives. Microchemical Journal, 191, 108807. https://doi.org/10.1016/j.microc.2023.108807

249.     Z.S. Gano, F.S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, The novel application of hydrated metal halide (SnCl2.2H2O)-based deep eutectic solvent for the extractive desulfurization of liquid fuels, Int. J. Chem. Eng. Appl. 6 (2015) 367–371, https://doi.org/10. 7763/IJCEA.2015.V6.511

250.     W. Jiang, L. Dong, W. Liu, T. Guo, H. Li, S. Yin, W. Zhu, H. Li, Biodegradable cholinelike deep eutectic solvents for extractive desulfurization of fuel, Chem. Eng. Process. Process Intensif. 115 (2017) 34–38, https://doi.org/10.1016/j.cep.2017.02.004

251.     X. Wang, W. Jiang, W. Zhu, H. Li, S. Yin, Y. Chang, H. Li, A simple and cost-effective extractive desulfurization process with novel deep eutectic solvents, RSC Adv. 6 (2016) 30345–30352, https://doi.org/10.1039/C5RA27266A

252.     W.S.A. Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions, Chem. Eng. Res. Des. 120 (2017) 271–283, https://doi.org/10.1016/j.cherd. 2017.02.025

253.     C.-f. Mao, R.-x. Zhao, X.-p. Li, Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil, Fuel 189 (2017) 400–407, https://doi.org/10.1016/j.fuel.2016.10.113

254.     Bolivar, J. M., Woodley, J. M., & Fernandez-Lafuente, R. (2022). Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 51(15), 6251-6290. https://doi.org/10.1039/D2CS00083K

255.     Chang, X. X., Mubarak, N. M., Mazari, S. A., Jatoi, A. S., Ahmad, A., Khalid, M., ... & Nizamuddin, S. (2021). A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of industrial and engineering chemistry, 104, 362-380. https://doi.org/10.1016/j.jiec.2021.08.033

256.     Ge, X., Gu, C., Wang, X., & Tu, J. (2017). Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 5(18), 8209-8229. https://doi.org/10.1039/C7TA01659J

257.     Horváth, I. T., & Anastas, P. T. (2007). Innovations and green chemistry. Chemical reviews107(6), 2169-2173. https://doi.org/10.1021/cr078380v

258.     Ahsan, H., Islam, S. U., Ahmed, M. B., Lee, Y. S., & Sonn, J. K. (2020). Significance of green synthetic chemistry from a pharmaceutical perspective. Current Pharmaceutical Design, 26(45), 5767-5782. https://doi.org/10.2174/1381612826666200928160851

259.     Anastas, P. T., & Williamson, T. C. (1996). Green chemistry: an overview. DOI; 10.1021/bk-1996-0626.ch001

260.     Sheldon, R. A. (2017). The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 19(1), 18-43. https://doi.org/10.1039/C6GC02157C

261.     Clark, J. H., Farmer, T. J., Herrero-Davila, L., & Sherwood, J. (2016). Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 18(14), 3914-3934. https://doi.org/10.1039/C6GC00501B

262.     Clarke, C. J., Tu, W. C., Levers, O., Brohl, A., & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical reviews, 118(2), 747-800. https://doi.org/10.1021/acs.chemrev.7b00571

263.     Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green chemistry13(10), 2638-2650. https://doi.org/10.1039/C1GC15386B

264.     Hessel, V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D., Escribà-Gelonch, M., ... & Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2), 410-437. https://doi.org/10.1039/D1GC03662A

265.     Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312. https://doi.org/10.1039/B918763B

266.     Bhagwat, P., Amobonye, A., Singh, S., & Pillai, S. (2022). Deep eutectic solvents in the pretreatment of feedstock for efficient fractionation of polysaccharides: current status and future prospects. Biomass Conversion and Biorefinery, 12(Suppl 1), 171-195. https://doi.org/10.1007/s13399-021-01745-x

267.     Aziz, M. A. A., Jalil, A. A., Triwahyono, S., & Ahmad, A. (2015). CO 2 methanation over heterogeneous catalysts: Recent progress and future prospects. Green Chemistry, 17(5), 2647-2663. https://doi.org/10.1039/C5GC00119F

268.     Mostafazadeh, A. K., Karimiestahbanati, M., Diop, A., Adjallé, K., Drogui, P., & Tyagi, R. D. (2021). Green Chemistry for Green Solvent Production and Sustainability Toward Green Economy. In Biomass, Biofuels, Biochemicals (pp. 583-636). Elsevier https://doi.org/10.1016/B978-0-12-821878-5.00017-9

269.     M.K. Hadj-Kali, S. Mulyono, H.F. Hizaddin, I. Wazeer, L. El-Blidi, E. Ali, M.A. Hashim, I.M. AlNashef, Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents, Ind. Eng. Chem. Res. 55 (2016) 8415–8423, https://doi.org/10.1021/acs.iecr.6b01654

270.     C. Li, J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liu, G. Yang, Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs), Green Chem. 18 (2016) 3789–3795, https://doi.org/10.1039/C6GC00366D

271.     S.E. Warrag, N.R. Rodriguez, I.M. Nashef, M. van Sint Annaland, J.I. Siepmann, M.C. Kroon, C.J. Peters, Separation of thiophene from aliphatic hydrocarbons using tetrahexylammonium-based deep eutectic solvents as extracting agents, J. Chem. Eng. Data 62 (2017) 2911–2919, https://doi.org/10.1021/acs.jced.7b00168

272.     T. Khezeli, A. Daneshfar, Synthesis and application of magnetic deep eutectic solvents: novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene, Ultrason. Sonochem. 38 (2017) 590–597, https://doi.org/10.1016/j. ultsonch.2016.08.023

273.     H.F.M. Zaid, F.K. Chong, M.I.A. Mutalib, Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent, Fuel 192 (2017) 10–17, https://doi.org/10.1016/j.fuel.2016.11.112

274.     J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45 (2006) 6962–6984, https://doi.org/10.1002/anie.200503779

275.     J. Yin, J. Wang, Z. Li, D. Li, G. Yang, Y. Cui, A. Wang, C. Li, Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents, Green Chem. 17 (2015) 4552–4559, https://doi.org/10.1039/C5GC00709G

276.     H. Lü, P. Li, C. Deng, W. Ren, S. Wang, P. Liu, H. Zhang, Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs), Chem. Commun. 51 (2015) 10703–10706, https://doi.org/10.1039/c5cc03324a

277.     M. Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao, Q. Wang, Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids, Chem. Eng. J. 220 (2013) 328–336, https://doi.org/10.1016/j.cej.2012.11.138

278.     Y. Nie, X. Gong, H. Gao, X. Zhang, S. Zhang, Simultaneous desulfurization and denitrogen of liquid fuels using two functionalized group ionic liquids, Sci. China Chem. 57 (2014) 1766–1773, https://doi.org/10.1007/s11426-014-5164-1

279.     L. Hao, M. Wang, W. Shan, C. Deng, W. Ren, Z. Shi, H. Lü, L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel, J. Hazard. Mater. 339 (2017) 216–222, https://doi.org/10.1016/j.jhazmat.2017.06.050

280.     Y. Nie, Y. Dong, L. Bai, H. Dong, X. Zhang, Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids, Fuel 103 (2013) 997–1002, https://doi.org/10.1016/j.fuel.2012.07.071

281.     H. Lü, P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, C. Deng, F. Yang, Synthesis of a hybrid Anderson-type polyoxometalate in deep eutectic solvents (DESs) for deep desulphurization of model diesel in ionic liquids (ILs), Chem. Eng. J. 313 (2017) 1004–1009, https://doi.org/10.1016/j.cej.2016.10.140

282.     W. Liu, W. Jiang, W. Zhu, W. Zhu, H. Li, T. Guo, W. Zhu, H. Li, Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents, J. Mol. Catal. A Chem. 424 (2016) 261–268, https://doi.org/10.1016/j.molcata.2016.08.030

283.     E. A. Krisanti, K. Saputra, M.M. Arif, K. Mulia, (2019), Formulation and characterization of betaine-based deep eutectic solvent for extraction phenolic compound from spent coffee grounds, AIP Conf. Proc. 2175, 020040-020048. https://doi.org/10.1063/1.5134604

284.     Llovell Ferret, F. L., Alkhatib, I. I., Ferreira, M. L., Alba, C. G., Bahamon, D., Pereiro, A. B., ... & Vega, L. F. (2020). Screening of ionic liquids and deep eutectic solvents for physical CO2 absorption by soft-SAFT using key performance indicators. J. Chem. Eng. Data. 65, 12, 5844-5861. https://doi.org/10.1021/acs.jced.0c00750

285.     D.V.Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel, ACS Sustain. Chem. Eng. 6 (2018) 7525–7531, https://doi.org/10.1021/acssuschemeng.8b00224

286.     Florindo C., Oliveira F.S., Rebelo L.P.N., Fernandes A.M., Murrucho I.M., (2014), Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids, ACS Sustainable Chem.Eng. 10, 2416-2425. https://doi.org/10.1021/sc500439w

287.     El Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental chemistry letters, 19, 3397-3408. https://doi.org/10.1007/s10311-021-01225-8

288.     Abranches, D. O., & Coutinho, J. A. (2022). Type V deep eutectic solvents: Design and applications. Current Opinion in Green and Sustainable Chemistry, 35, 100612. https://doi.org/10.1016/j.cogsc.2022.100612

289.     Janicka, P., Kaykhaii, M., Płotka-Wasylka, J., & Gębicki, J. (2022). Supramolecular deep eutectic solvents and their applications. Green Chemistry, 24(13), 5035-5045. https://doi.org/10.1039/D2GC00906D

290.     El Achkar, T., Greige-Gerges, H., & Fourmentin, S. (2021). Understanding the basics and properties of deep eutectic solvents. Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances, 1-40. https://doi.org/10.1007/978-3-030-53069-3_1

291.     Sas, O.G.; Domínguez, I.; González, B. Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim]FSI. J. Environ. Manag. 2018, 228, 475–482. https://doi.org/10.1016/j.jenvman.2018.09.042

292.     Sas, O.G.; Sánchez, P.B.; González, B. Removal of phenolic pollutants from wastewater streams using ionic liquids. Sep. Purif. Technol. 2019, 236, 116310. https://doi.org/10.1016/j.seppur.2019.116310

293.     Wang, Y.; Wang, X.; Li, H. Treatment of high salinity phenol-laden wastewater using a sequencing batch reactor containing halophilic bacterial community. Int. Biodeterior. Biodegrad. 2014, 93, 138–144. https://doi.org/10.1016/j.ibiod.2014.04.010

294.     Raza, W.; Lee, J.; Raza, N. Removal of phenolic compounds from industrial waste water based on membrane-based technologies.J. Ind. Eng. Chem. 2019, 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024

295.     Tri NL, M.; Thang, P.Q.; Tan, L.V.; Tahtamouni, T.M.A. Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. J. Water Process. Eng. 2020, 33, 101070. https://doi.org/10.1016/j.jwpe.2019.101070

296.     Alshabib, M.; Onaizi, S.A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep. Purif. Technol. 2019, 219, 186–207. https://doi.org/10.1016/j.seppur.2019.03.028

297.     Rispail, N.; Morris, P.;Webb, K.J. Phenolic compounds extraction and analysis. In Lotus Japonicus Handbook; Márquez, A.J., Ed.; Springer: Amsterdam, The Netherlands, 2005; pp. 349–354. https://doi.org/10.1007/1-4020-3735-X_34

Related Images:



Recent Images



Optimized Structural Design of G+7 Residential Buildings: A Modern Approach with ETABS
Quantitative Estimation of Piperine in Drakshadi Ghrita by HPTLC Method
Screening of phenolics and flavonoids using FTIR and UV-Vis: Antioxidant activity and HPLC quantification of gallic acid and ellagic acid
Carbon Dots in Biomedical Applications: A Review of Their Interaction with Serum Albumins, Antidepressant Agents, and Enzymatic Systems
Review on Solar Energy in India, Achievements (2021–2025), and Benefits of Solar Energy
Investigation on Groundwater Quality in Sukma Bastar District, Chhattisgarh
Implement of Dijkstra method in Village data management system for Optimal Route Calculation
Fiber Reinforced Concrete: Comparative Analysis of Helix Steel Fibers and Plain Steel Fibers in Structural Applications
Dynamic Geometrical Modeling and Computational Analysis of Multi-Bob Pendulum Wave Interference Systems
A Comparative Analysis of Inventory Models: Evaluating the Economic Order Quantity (EOQ) Model with Constant Demand versus Variable Demand Rates

Tags


Recomonded Articles:

Author(s): Deepti Tikariha; Jyotsna Lakra; Srishti Dutta Roy; Toshikee Yadav; Kallol KGhosh

DOI:         Access: Open Access Read More

Author(s): Lavkesh Kumar Singh Tanwar; Kallol K Ghosh

DOI: 10.52228/JRUB.2024-37-1-5         Access: Open Access Read More

Author(s): Kallol K. Ghosh; Kishor K. Krishnan

DOI:         Access: Open Access Read More

Author(s): PR Shende; PR Itankar; SK Prasad

DOI:         Access: Open Access Read More

Author(s): Bina Gidwani; Amber Vyas; Chanchal Deep Kaur

DOI:         Access: Open Access Read More

Author(s): Renu Bhatt; Neha Pandey

DOI:         Access: Open Access Read More

Author(s): Sanmoy Karmakar

DOI:         Access: Open Access Read More

Author(s): Kallol K.Ghosh; Klshoae K Krishnanl

DOI:         Access: Open Access Read More

Author(s): Sonam S Gonnade; PR Itankar; SK Prasad

DOI:         Access: Open Access Read More

Author(s): Benvikram Barman; Manoj Kumar Banjare; Bhupendra Singh Banjare; Dolly Baghel

DOI: 10.52228/JRUB.2025-38-1-7         Access: Open Access Read More

Author(s): Subrat Verma; Shobhana Ramteke; Manas Kanti Deb

DOI: 10.52228/JRUB.2025-38-1-14         Access: Open Access Read More