References
1.
Thompson,
W.L. & Talley, M.F. Deep learning for iot communications. 53rd Annual
Conference on Information Sciences and Systems (CISS), 2019, pp. 1-4. doi:
10.1109/CISS.2019.8693025
2.
Al-Kashoash,
Hayder & Ahmed,Abdulmohsin. Congestion control for 6LoWPAN wireless sensor
networks: Toward the internet of things. University of Leeds, 2017. PhD Thesis.
doi: 10.1007/978-3-030-17732-4
3.
Wang,
M.; Cui, Y.; Wang, X.; Xiao, S. & Jiang J. Machine learning for networking:
Workflow, advances and opportunities. IEEE Network, 2017, 32(2), 92-99. doi:
10.1109/MNET.2017.1700200
4.
O.
Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “QoS guarantee over hybrid
SDN/non-SDN networks,” in 2017 8th
International Conference on the Network of the Future (NOF), pp.
141–143, 2017.
5.
A. Maheshwari and R. K.
Yadav, "Analysis of Congestion
Control Mechanism for IOT," 2020
10th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 2020, pp. 288-293, doi:
10.1109/Confluence47617.2020.9058058.
6.
I.
CompTIA, “Sizing up the internet of things”, (2015)[EB/OL], https://www.comptia.org/resources/sizing-up-the-internet-of-things
7.
J.
Ren, Y. Zhang, N. Zhang, D. Zhang, X. Shen (2016) “Dynamic channel access to
improve energy efficiency in cognitive radio sensor networks”, IEEE
Transactions on Wireless Communications, 15 (5) 3143–3156.
8.
DongJin
Lee, Brian E Carpenter, and Nevil Brownlee. Media streaming observations:
Trends in udp to tcp ratio. International Journal on Advances in Systems and
Measurements, 3(3-4), 2010.
9.
Belma
Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty Shades of Congestion
Control: A Performance and Interactions Evaluation. arXiv:1903.03852 [cs],
March 2019. URL http://arxiv.org/abs/1903.03852. arXiv: 1903.03852.
10.
Stevens
W.: RFC 2001 - TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms
11.
Parziale,
Lydia, David T. Britt, Chuck Davis, Jason Forrester, Wei Liu, Carolyn Matthews,
and Nicolas Rosselot. TCP/IP Tutorial and Technical Overview. IBM International
Technical Support Organization, 2006.
12.
Belma
Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty Shades of Congestion
Control: A Performance and Interactions Evaluation. arXiv:1903.03852 [cs],
March 2019. URL http://arxiv.org/abs/1903.03852. arXiv: 1903.03852.
13.
H.
Byun and J. Lin, (2005) “On a fair congestion control scheme for TCP Vegas,”
IEEE Communication Letters 9(2):102:105.
14.
Saint-Andre
P (2011) “Extensible Messaging and Presence Protocol (XMPP): Core”.
https://tools.ietf.org/html/rfc6120.
15.
MQTT
Version 3.1.1 (2015)
http://docs.oasis-en.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.doc.
16.
R.Fielding
(2000) RESTful HTTP.
http://www.infoq.com/articles/designing-restful-http-apps-roth.
17.
V
Jacobson (1988) “Congestion avoidance and control”, ACM SIGCOMM Computer
Communication Review, 18(4):14-329.
18.
M
Allman, V Paxson, W Stevens,(1999) “TCP congestion control”.
https://tools.ietf.org/html/rfc2581.
19.
S
Floyd, T Henderson, (1999) “The NewReno modification to TCP’s fast recovery
algorithm”. https://tools.ietf.org/html/rfc2582.
20.
S
Floyd, T Henderson, A Gurtov, (2004) “The NewReno modification to TCP’s fast
recovery algorithm”. https://tools.ietf.org/html/rfc3782.
21.
M
Mathis , J Mahdavi ,S Floyd ,A Romanov, (1996) “TCP selective acknowledgment
options”. https://tools.ietf.org/html/rfc2018.
22.
T
Kelly (2003) “Scalable TCP: improving performance in high-speed wide area
networks”. ACM SIGCOMM Computer Communication Review, 33: 83 – 91.
23.
D
Leith , R Shorten (2007) “H-TCP: TCP congestion control for high
bandwidth-delay product paths”. https://tools.ietf.org/html/draft-leith-
24.
S
Ha, I Rhee, L Xu (2008) “CUBIC: a new TCP-friendly high-speed TCP variant”. ACM
SIGOPS Operating Systems Review, 42:64–74
25.
]L
Xu, K Harfoush, I Rhee, (2004) “Binary increase congestion control for fast,
long distance networks”. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, 2514–2524X.
26.
J
Wang, J Wen, Y Han, J Zhang, C Li, Z Xiong (2013) “CUBIC-FIT: A High
Performance and TCP CUBIC Friendly Congestion ControlAlgorithm”. IEEE
Communication Latter, 17:1664-1667.
27.
L
Brakmo, L Peterson (1995) “TCP Vegas: end to end congestion avoidance on a
global Internet”. IEEE Journal on Selected Areas in Communications,
13:1465–1480.
28.
G
Hasegawa, K Kurata, M Murata (2000) “Analysis and improvement of fairness
between TCP Reno and Vegas for deployment of TCP Vegas to the Internet”.
International Conference on Network Protocols, 177–186.
29.
Muhammad
A. S. , Muhammad S. A., Shakeel W, Sanam B. , Usman S.,” Congestion Control in
IoT” IJCSNS International Journal of Computer Science and Network Security,
VOL.19 No.2, February 2019 pp 56-61
30.
S.Keshav,
REAL 5.0 Overview, Cornell University, Available
as:http://www.cs.cornell.edu/skeshav/real
31.
INSANE,
An Internet Simulated ATM Networking Environment, Available as:
http://www.ca.sandia.gov/~bmah/Software/Insane Lewis, Barnett, “An Ethernet
Performance Simulator for Undergraduate Networking”, Proceeding of ACM SIGCSE
Technical Symposium, 1993
32.
Lewis,
Barnett, “An Ethernet Performance Simulator for Undergraduate Networking”,
Proceeding of ACM SIGCSE Technical Symposium, 1993
33.
CACI
Products company, COMNET III, Available at:
http://www.caciasl.com/COMNET_quick_look.htm
34.
N.
Sarkar and S. Halim, “Simulation of computer networks” Simulators,
methodologies and recommendations. 2008.
35.
Dr.
Vijay R. Ghorpade, “Comparative Study of Network Simulator: NS2 and
NS3,”International Journal of Advanced Research in Computer Science and
SoftwareEngineering, Vol 6, March 2016.
36.
J. A. Miller, R. S. Nair, Z. Zhang and H. Zhao,
"JSIM: A Java-based simulation and animation environment," Proceedings
of 1997 SCS Simulation Multiconference, Atlanta, GA, USA, 1997, pp. 31-42,
doi: 10.1109/SIMSYM.1997.586473.
37.
Girish
P. , Swapnesh T., N.S. Yadav,” A Design and Implementation Framework of
Congestion Control Algorithm Module in the Network Simulator 3 (NS-3)”,
International Journal of Computing and Applications ISSN: 0973-5704 Volume 13,
Number 2, (July-December 2018), pp 371-379
38.
C. Cammin et al., "Concept
for a Real-Time IoT-Architecture for Collision Avoidance in Smart Cities based
on the 5G Mobile Technology," 2023 IEEE International Conference
on Omni-layer Intelligent Systems (COINS), Berlin, Germany, 2023, pp. 1-7,
doi: 10.1109/COINS57856.2023.10189240.
keywords: {Pedestrians;5G mobile
communication;Transmitters;Smart cities;Roads;Real-time systems;Internet of
Things;5G;IoT;Traffic;Smart City;Safety;Collision Avoidance;Cloud
Architecture},
39.
Chappala, R.; Anuradha, C.; Murthy, P.S.R.C.
Adaptive Congestion Window Algorithm for the Internet of Things Enabled
Networks. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 105–111. [CrossRef]
40.
Gupta, A.K.; Singh, D.; Singh, K.; Verma, L.P.
STCP: A Novel Approach for Congestion Control in IoT Environment. J. Inf.
Technol. Manag. 2022, 14, 44–51
41.
Aljubayri,
M.; Peng, T.; Shikh-Bahaei, M. Reduce delay of multipath TCP in IoT networks.
Wirel. Netw. 2021, 27, 4189–4198