Abstract View

Author(s): Gomed Kumar Pathak, V.K. Patle

Email(s): gomed.pathak@gmail.com , patlevinod@gmail.com

Address: SOS in Computer Science and IT, Pt. Ravishankar Shukla University Raipur, C.G.
SOS in Computer Science and IT, Pt. Ravishankar Shukla University Raipur, C.G.
*Corresponding Author: gomed.pathak@gmail.com

Published In:   Volume - 37,      Issue - 2,     Year - 2024

DOI: 10.52228/JRUB.2024-37-2-1  

ABSTRACT:
Internet of Things has picked stream over industry, education and research, which provide a platform to connect various heterogeneous devices over internet. Devices may be sensor node related to environmental data collection, prediction, industry systems etc. Nowadays connection of various devices increases over the internet exponentially which causes congestion controls in Internet of Things. Congestion control plays a vital role in the transmission of large amount of data. In the era of Internet of things (IoT) which embellished our life still faces various challenges. Such as interoperatibility, security and congestion control. In the networks working on Internet of things due to the sensitivity of traffics would become extremely complicated as there is a genuine risk of congestion collapse in the absence of adequate congestion control mechanisms. This paper presents a review of congestion control techniques, types of congestion control techniques, congestion avoidance, performance matrix and supporting tools in Internet of Things.

Cite this article:
Pathak and Patle (2024). A Review on role of Congestion Control Techniques in Internet of Things. Journal of Ravishankar University (Part-B: Science), 37(2), pp. 1-8. DOI:DOI: https://doi.org/10.52228/JRUB.2024-37-2-1


References

1.     Thompson, W.L. & Talley, M.F. Deep learning for iot communications. 53rd Annual Conference on Information Sciences and Systems (CISS), 2019, pp. 1-4. doi: 10.1109/CISS.2019.8693025

2.     Al-Kashoash, Hayder & Ahmed,Abdulmohsin. Congestion control for 6LoWPAN wireless sensor networks: Toward the internet of things. University of Leeds, 2017. PhD Thesis. doi: 10.1007/978-3-030-17732-4

3.     Wang, M.; Cui, Y.; Wang, X.; Xiao, S. & Jiang J. Machine learning for networking: Workflow, advances and opportunities. IEEE Network, 2017, 32(2), 92-99. doi: 10.1109/MNET.2017.1700200

4.     O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “QoS guarantee over hybrid SDN/non-SDN networks,” in 2017 8th International Conference on the Network of the Future (NOF), pp. 141–143, 2017.

5.     A. Maheshwari and R. K. Yadav, "Analysis of Congestion Control Mechanism for IOT," 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2020, pp. 288-293, doi: 10.1109/Confluence47617.2020.9058058.

6.     I. CompTIA, “Sizing up the internet of things”, (2015)[EB/OL], https://www.comptia.org/resources/sizing-up-the-internet-of-things

7.     J. Ren, Y. Zhang, N. Zhang, D. Zhang, X. Shen (2016) “Dynamic channel access to improve energy efficiency in cognitive radio sensor networks”, IEEE Transactions on Wireless Communications, 15 (5) 3143–3156.

8.     DongJin Lee, Brian E Carpenter, and Nevil Brownlee. Media streaming observations: Trends in udp to tcp ratio. International Journal on Advances in Systems and Measurements, 3(3-4), 2010.

9.     Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty Shades of Congestion Control: A Performance and Interactions Evaluation. arXiv:1903.03852 [cs], March 2019. URL http://arxiv.org/abs/1903.03852. arXiv: 1903.03852.

10.  Stevens W.: RFC 2001 - TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms

11.  Parziale, Lydia, David T. Britt, Chuck Davis, Jason Forrester, Wei Liu, Carolyn Matthews, and Nicolas Rosselot. TCP/IP Tutorial and Technical Overview. IBM International Technical Support Organization, 2006.

12.  Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty Shades of Congestion Control: A Performance and Interactions Evaluation. arXiv:1903.03852 [cs], March 2019. URL http://arxiv.org/abs/1903.03852. arXiv: 1903.03852.

13.  H. Byun and J. Lin, (2005) “On a fair congestion control scheme for TCP Vegas,” IEEE Communication Letters 9(2):102:105.

14.  Saint-Andre P (2011) “Extensible Messaging and Presence Protocol (XMPP): Core”. https://tools.ietf.org/html/rfc6120.

15.  MQTT Version 3.1.1 (2015) http://docs.oasis-en.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.doc.

16.  R.Fielding (2000) RESTful HTTP. http://www.infoq.com/articles/designing-restful-http-apps-roth.

17.  V Jacobson (1988) “Congestion avoidance and control”, ACM SIGCOMM Computer Communication Review, 18(4):14-329.

18.  M Allman, V Paxson, W Stevens,(1999) “TCP congestion control”. https://tools.ietf.org/html/rfc2581.

19.  S Floyd, T Henderson, (1999) “The NewReno modification to TCP’s fast recovery algorithm”. https://tools.ietf.org/html/rfc2582.

20.  S Floyd, T Henderson, A Gurtov, (2004) “The NewReno modification to TCP’s fast recovery algorithm”. https://tools.ietf.org/html/rfc3782.

21.  M Mathis , J Mahdavi ,S Floyd ,A Romanov, (1996) “TCP selective acknowledgment options”. https://tools.ietf.org/html/rfc2018.

22.  T Kelly (2003) “Scalable TCP: improving performance in high-speed wide area networks”. ACM SIGCOMM Computer Communication Review, 33: 83 – 91.

23.  D Leith , R Shorten (2007) “H-TCP: TCP congestion control for high bandwidth-delay product paths”. https://tools.ietf.org/html/draft-leith-

24.  S Ha, I Rhee, L Xu (2008) “CUBIC: a new TCP-friendly high-speed TCP variant”. ACM SIGOPS Operating Systems Review, 42:64–74

25.  ]L Xu, K Harfoush, I Rhee, (2004) “Binary increase congestion control for fast, long distance networks”. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, 2514–2524X.

26.  J Wang, J Wen, Y Han, J Zhang, C Li, Z Xiong (2013) “CUBIC-FIT: A High Performance and TCP CUBIC Friendly Congestion ControlAlgorithm”. IEEE Communication Latter, 17:1664-1667.

27.  L Brakmo, L Peterson (1995) “TCP Vegas: end to end congestion avoidance on a global Internet”. IEEE Journal on Selected Areas in Communications, 13:1465–1480.

28.  G Hasegawa, K Kurata, M Murata (2000) “Analysis and improvement of fairness between TCP Reno and Vegas for deployment of TCP Vegas to the Internet”. International Conference on Network Protocols, 177–186.

29.  Muhammad A. S. , Muhammad S. A., Shakeel W, Sanam B. , Usman S.,” Congestion Control in IoT” IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.2, February 2019 pp 56-61

30.  S.Keshav, REAL 5.0 Overview, Cornell University, Available as:http://www.cs.cornell.edu/skeshav/real

31.  INSANE, An Internet Simulated ATM Networking Environment, Available as: http://www.ca.sandia.gov/~bmah/Software/Insane Lewis, Barnett, “An Ethernet Performance Simulator for Undergraduate Networking”, Proceeding of ACM SIGCSE Technical Symposium, 1993

32.  Lewis, Barnett, “An Ethernet Performance Simulator for Undergraduate Networking”, Proceeding of ACM SIGCSE Technical Symposium, 1993

33.  CACI Products company, COMNET III, Available at: http://www.caciasl.com/COMNET_quick_look.htm

34.  N. Sarkar and S. Halim, “Simulation of computer networks” Simulators, methodologies and recommendations. 2008.

35.  Dr. Vijay R. Ghorpade, “Comparative Study of Network Simulator: NS2 and NS3,”International Journal of Advanced Research in Computer Science and SoftwareEngineering, Vol 6, March 2016.

36.  J. A. Miller, R. S. Nair, Z. Zhang and H. Zhao, "JSIM: A Java-based simulation and animation environment," Proceedings of 1997 SCS Simulation Multiconference, Atlanta, GA, USA, 1997, pp. 31-42, doi: 10.1109/SIMSYM.1997.586473.

37.  Girish P. , Swapnesh T., N.S. Yadav,” A Design and Implementation Framework of Congestion Control Algorithm Module in the Network Simulator 3 (NS-3)”, International Journal of Computing and Applications ISSN: 0973-5704 Volume 13, Number 2, (July-December 2018), pp 371-379

38.  C. Cammin et al., "Concept for a Real-Time IoT-Architecture for Collision Avoidance in Smart Cities based on the 5G Mobile Technology," 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Berlin, Germany, 2023, pp. 1-7, doi: 10.1109/COINS57856.2023.10189240.
keywords: {Pedestrians;5G mobile communication;Transmitters;Smart cities;Roads;Real-time systems;Internet of Things;5G;IoT;Traffic;Smart City;Safety;Collision Avoidance;Cloud Architecture},

39.   Chappala, R.; Anuradha, C.; Murthy, P.S.R.C. Adaptive Congestion Window Algorithm for the Internet of Things Enabled Networks. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 105–111. [CrossRef]

40.   Gupta, A.K.; Singh, D.; Singh, K.; Verma, L.P. STCP: A Novel Approach for Congestion Control in IoT Environment. J. Inf. Technol. Manag. 2022, 14, 44–51

41.  Aljubayri, M.; Peng, T.; Shikh-Bahaei, M. Reduce delay of multipath TCP in IoT networks. Wirel. Netw. 2021, 27, 4189–4198

 

Related Images:



Recent Images



A Review on role of Congestion Control Techniques in Internet of Things
Recent Advancement in Capsule: Emerging Novel Technologies and Alternative Shell Materials for Wide Range of Therapeutic Needs
Effect of L-Dopa on cypermethrin induced reproductive conditions in female Japanese quail, Coturnix coturnix japonica
Preparation, Characterization, and Applications of Albumin Serum-Based Nanoparticles
Study of developmental stages and morphometrics of Parthenium beetle in Bastar plateau agro-climatic zone of Chhattisgarh
PANI Incorporated Fe-MOF: As an Electrode Material for Supercapacitor
Surface Modified Magnetic Nanoparticles as an Efficient Material for Wastewater Remediation: A Review
A Review on Groundwater Pollution in India and their Health Problems
Incidence of Chronic fever in Raigarh Development Block of Raigarh District, Chhattisgarh, India
Study the optimization of Dijkstra’s Algorithm

Tags


Recomonded Articles:

Author(s): Gomed Kumar Pathak; V.K. Patle

DOI: 10.52228/JRUB.2024-37-2-1         Access: Open Access Read More