References
[1] Badrinarayanan, V.,
Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(12):2481– 2495.
[2] Bose, K., Shubham,
K., Tiwari, V., and Patel, K. S. (2022). Insect image semantic segmentation and
identification using unet and deeplab v3+. In ICT Infrastructure and Computing:
Proceedings of ICT4SD 2022, pages 703–711. Springer.
[3] Chen, L.-C., Yang,
Y., Wang, J., Xu, W., and Yuille, A. L. (2016). Attention to scale: Scale-aware
semantic image segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3640–3649.
[4] Chen, L.-C., Zhu,
Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder decoder with
atrous separable convolution for semantic image seg- mentation. In Proceedings
of the European conference on computer vision (ECCV), pages 801–818.
[5] Choi, S., Kim, J.
T., and Choo, J. (2020). Cars can’t fly up in the sky:
Improving urban-scene segmentation via height-driven attention networks. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9373–9383.
[6] Gong, K., Gao, Y.,
Liang, X., Shen, X., Wang, M., and Lin, L. (2019). Graphonomy: Universal human
parsing via graph transfer learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7450–7459. 10
[7] Gong, K., Liang, X.,
Li, Y., Chen, Y., Yang, M., and Lin, L. (2018). Instance-level human parsing
via part grouping network. In Proceedings of the European conference on computer
vision (ECCV), pages 770–785.
[8] Hu, J., Shen, L.,
and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141.
[9] Ji, R., Du, D.,
Zhang, L., Wen, L., Wu, Y., Zhao, C., Huang, F., and Lyu, S. (2020). Learning
semantic neural tree for human parsing. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII
16, pages 205–221. Springer.
[10] Kashyap, R. and
Tiwari, V. (2017). Energy-based active contour method for image segmentation.
International Journal of Electronic Healthcare, 9(2-3):210–225.
[11] Kashyap, R. and
Tiwari, V. (2018). Active contours using global models for medical image
segmentation. International Journal of Computational Systems Engineering,
4(2-3):195–201.
[12] Li, P., Xu, Y.,
Wei, Y., and Yang, Y. (2020). Self-correction for human parsing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(6):3260–3271.
[13] Liu, K., Choi, O.,
Wang, J., and Hwang, W. (2022). Cdgnet: Class distribution guided network for
human parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4473–4482.
[14] Lovanshi, M. and
Tiwari, V. (2023). Human pose estimation: Bench- marking deep learning-based
methods. In proceedings of the IEEE Conference on Interdisciplinary Approaches
in Technology and Management for Social Innovation.
[15] Patel, A. S., Vyas,
R., Vyas, O., Ojha, M., and Tiwari, V. (2022). Motion-compensated online object
tracking for activity detection and crowd behavior analysis. The Visual Computer,
pages 1–21. [16] Rochan, M. et al. (2018). Future semantic segmentation with
convolutional lstm. arXiv preprint arXiv:1807.07946. 11
[16] Ronneberger, O.,
Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5 9, 2015, Proceedings,
Part III 18, pages 234–241. Springer.
[17] Ruan, T., Liu, T.,
Huang, Z., Wei, Y., Wei, S., and Zhao, Y. (2019). Devil in the details: Towards
accurate single and multiple human parsing. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 4814–4821.
[18] Wang, P., Chen, P.,
Yuan, Y., Liu, D., Huang, Z., Hou, X., and Cottrell, G. (2018). Understanding
convolution for semantic segmentation. In 2018 IEEE winter conference on applications
of computer vision (WACV), pages 1451–1460. Ieee.
[19] Woo, S., Park, J.,
Lee, J.-Y., and Kweon, I. S. (2018). Cbam: Convolutional block attention
module. In Proceedings of the European conference on computer vision (ECCV), pages
3–19.
[20] Zhang, X., Chen,
Y., Zhu, B., Wang, J., and Tang, M. (2020a). Part-aware context network for
human parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8971–8980.
[21] Zhang, Z., Su, C.,
Zheng, L., and Xie, X. (2020b). Correlating edge, pose with parsing. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8900–8909.
[22] Zhou, B., Zhao, H.,
Puig, X., Xiao, T., Fidler, S., Barriuso, A., and Torralba, A. (2019). Semantic
understanding of scenes through the ade20k dataset. International Journal of
Computer Vision, 127:302–321.