Abstract View

Author(s): Akhilesh Kumar Tiwari*

Email(s): akhileshtiwari@india.com

Address: ITM University, Atal Nagar, Raipur, Chhattisgarh, India
*Corresponding Author: akhileshtiwari@india.com

Published In:   Volume - 32,      Issue - 1,     Year - 2019

ABSTRACT:
Teaching robotics to young students can increase their ability to be creative, innovative thinkers and more productive members of society throughout their school years. Indian government have already recognized the importance of robotics in the classroom teaching and started ATAL tinkering lab to be included in school education system. By teaching the basics of robotics to the students, one can open up a whole new world for them and exciting opportunities which they wouldn't have access to. In traditional teaching methods of science and engineering, students lack experience in applying physical principles to the physical situation in real time. Students are not engaged in creating interest in interactive learning. To overcome above problem, this paper presents a new and versatile interactive learning tool using the Whizbrabo Robotic Education Module. This module describes the method of an educational tool based on robotics to study electrical component interfacing, pcb design, mechanical structure design and elementary programming skill. The module has been demonstrated to school students of higher secondary, and undergraduate student of various colleges. The key advantages of robotics in school education will enhance the level of programming, creativity and prepare them for the future, turn their frustration into innovation and promote inclusiveness. Robotics has a lot of educational potential.

Cite this article:
Tiwari (2019). Robotics Module in Enhancing Interactive Stem Education. Journal of Ravishankar University (Part-B: Science), 32 (1), pp. 34-37.


References

Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning1(209-0015), 13.

Tuluri, F. (2015, March). Using robotics educational module as an interactive STEM learning platform. In Integrated STEM Education Conference (ISEC), 2015 IEEE (pp. 16-20). IEEE.

Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of research on technology in education39(3), 229-243.

Ospennikova, E., Ershov, M., & Iljin, I. (2015). Educational robotics as an inovative educational technology. Procedia-Social and Behavioral Sciences214, 18-26.

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics in early childhood education. Information technology in childhood education annual2002(1), 123-145.

Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM42(6), 85-92.

Related Images:



Recent Images



Performance Evaluation of Spectrogram Based Epilepsy Detection Techniques Using Gray Scale Features
Spectrophotometric Determination of Phenthoate in Vegetables and Fruit Samples of Kabirdham (Chhattisgarh)
Flotation-Dissolution-Spectrophotometric Determination of Phorate in Various Environmental Samples
Preparation, Fabrication and Characterization of Sol-Gel ZnO Thin Films for Organic Solar Cells
Distribution of Some Selected Surface Active Agents (SAAs) in the Aquatic and Global Environment with Their Toxic Impact: A Comprehensive Review
Intriguing Clinical and Pharmaceutical Applications of IERs: A Mini Review
Development and Characterization of Quercetin Loaded Nanoparticle for Skin Cancer
Moderating effect of gender on the association between occupational Aspiration and carrier maturity
Ion Transport and Materials Characterization Studies on Hot-Press Cast Zn2+ Conducting Nano-Composite Polymer Electrolyte (NCPE) Films: [90 PEO: 10 Zn (CF3SO3)2] + xAl2o3
Electrical Modeling of Dye-Sensitized Solar Cells for Improving the Overall Photoelectric Conversion Efficiency

Tags